期刊文献+
共找到4,475篇文章
< 1 2 224 >
每页显示 20 50 100
POSITIVE DEFINITE KERNEL IN SUPPORT VECTOR MACHINE(SVM) 被引量:3
1
作者 谢志鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期114-121,共8页
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t... The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed. 展开更多
关键词 support vector machines(SVMs) mercer kernel reproducing kernel positive definite kernel scaling and wavelet kernel
在线阅读 下载PDF
Identification of reservoir types in deep carbonates based on mixedkernel machine learning using geophysical logging data
2
作者 Jin-Xiong Shi Xiang-Yuan Zhao +3 位作者 Lian-Bo Zeng Yun-Zhao Zhang Zheng-Ping Zhu Shao-Qun Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1632-1648,共17页
Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analy... Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates. 展开更多
关键词 Reservoir type identification Geophysical logging data kernel Fisher discriminantanalysis Mixedkernel function Deep carbonates
在线阅读 下载PDF
Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach 被引量:1
3
作者 Jie Chen Huiqiong Huang +4 位作者 Yichao Rui Yuanyuan Pu Sheng Zhang Zheng Li Wenzhong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期943-956,共14页
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l... Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications. 展开更多
关键词 Microseismic source/acoustic emission(MS/AE) kernel density estimation(KDE) Damping linear correction Source location Abnormal arrivals
在线阅读 下载PDF
我国护理人力资源区域差异的演变特征——基于Dagum基尼系数分解和Kernel核密度估计的实证研究
4
作者 王佳怡 沈芸 +2 位作者 朱燕 宋天敕 陈洁婷 《军事护理》 CSCD 北大核心 2024年第11期90-94,共5页
目的分析我国护理人力资源的区域差异及分布动态演进,为我国护理人力资源的合理配置和规划提供参考。方法基于2011-2022年省级护理人力资源面板数据,通过测算Kernel密度和Dagum基尼系数对我国护理人力资源的区域差异及分布动态演进进行... 目的分析我国护理人力资源的区域差异及分布动态演进,为我国护理人力资源的合理配置和规划提供参考。方法基于2011-2022年省级护理人力资源面板数据,通过测算Kernel密度和Dagum基尼系数对我国护理人力资源的区域差异及分布动态演进进行分析评价。结果2011-2022年,在空间分布上,全国及各地区护理人力资源总量呈增加趋势,各区域差异逐步降低,且两极化特征明显;在区域差异上,我国护理人力资源总体差异均值为0.1149;区域内呈东部>西部>中部>东北区域的梯度逐步递增趋势;区域间差异占总体差异的40.61%。结论全国护理人力资源总体差异处于相对合理状态,区域间差异是主要来源,均等化水平逐步提升;政府应针对各区域精准施策,进一步稳定护理人力资源队伍,完善护理人力资源结构以促进护理人力资源的优质均衡发展。 展开更多
关键词 护理人力资源 区域差异 Dagum基尼系数 kernel密度估计
在线阅读 下载PDF
A wealth distribution model with a non-Maxwellian collision kernel
5
作者 孟俊 周霞 赖绍永 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期224-231,共8页
A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the... A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index. 展开更多
关键词 kinetic theory non-Maxwellian collision kernel wealth distribution Pareto index
在线阅读 下载PDF
HEAT KERNEL ON RICCI SHRINKERS(II)
6
作者 Yu LI Bing WANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1639-1695,共57页
This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature... This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature boundedness assumptions and show that the theory of F-convergence holds naturally on any Ricci flows induced by Ricci shrinkers. 展开更多
关键词 Ricci flow Ricci shrinker heat kernel
在线阅读 下载PDF
Nuclear charge radius predictions by kernel ridge regression with odd-even effects
7
作者 Lu Tang Zhen-Hua Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期94-102,共9页
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(... The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method. 展开更多
关键词 Nuclear charge radius Machine learning kernel ridge regression method
在线阅读 下载PDF
Influence of broken kernels content on soybean quality during storage
8
作者 Lazaro da Costa Correa Canizares Cesar Augusto Gaioso +5 位作者 Newiton da Silva Timm Silvia Leticia Rivero Meza Adriano Hirsch Ramos Maurício de Oliveira Everton Lutz Moacir Cardoso Elias 《Grain & Oil Science and Technology》 CAS 2024年第2期105-112,共8页
Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for grou... Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for group I and group II(quality groups),respectively.However,the industry is not informed about the loss in the quality parameters of soybeans and its impacts during long-term storage.Therefore,the objective was to evaluate the effect of the breakage kernel percentage of soybean stored for 12 months.Content of 15% of breakage kernels did not affect soybean quality.However,content of 30% of breakage kernels affected significantly soybean quality,which was evidenced by the increase of up to 75% in moldy soybeans,72% in acidity,50% in leached solids,27% in electrical conductivity,and the decrease of up to 12% in soluble protein,6.4% in germination and 3.5% in thousand kernel weight after 8 months of storage.Although the legislation establishes a percentage limit,it is recommended to store soybeans with up to 15% breakage kernels.On the contrary,values higher than that can cause a significant reduction in soybean quality,resulting in commercial losses. 展开更多
关键词 Soybean quality Breakage kernels Storage problems Grain defects Quality parameters
在线阅读 下载PDF
早期糖尿病性视网膜病变mf-ERG一阶kernel反应改变 被引量:7
9
作者 严良 赵婕 +3 位作者 秦洁 丁琦 陆豪 杨蕾 《眼科新进展》 CAS 2006年第2期120-123,共4页
目的 观察早期糖尿病性视网膜病变(简称糖网病)眼视网膜功能。方法将临床确诊为糖尿病并且最佳矫正视力在1.0以上、OCT检查视网膜厚度正常、眼底镜检正常或为轻度非增生性糖尿病性视网膜病变患者共27例54眼作为糖尿病组(按眼底检查... 目的 观察早期糖尿病性视网膜病变(简称糖网病)眼视网膜功能。方法将临床确诊为糖尿病并且最佳矫正视力在1.0以上、OCT检查视网膜厚度正常、眼底镜检正常或为轻度非增生性糖尿病性视网膜病变患者共27例54眼作为糖尿病组(按眼底检查情况分为轻度糖网病组与糖尿病无糖网病组);另将正常同龄27例35眼作为正常对照组,分别行多焦视网膜电图一阶kernel反应(first order kernel)检查;将检查结果分别作比较。结果 与正常对照组相比,糖尿病组FOK P1波1环的振幅密度值降低,差异有高度显著性(P=0.0002);N1波5环、P1波4~5环的峰时均有延迟,差异有显著性(P=0.0378、0.0172、0.0026);其后极部30°范围内P1波峰时也延迟,差异有显著性(P=0.0121)。与糖尿病无糖网病组相比,轻度糖网病组FOK N1波4环的振幅密度值增高,差异有显著性(P=0.0469);N1波3、5环,P1波3~5环的峰时均延迟,差异有显著性(P=0.0084、0.0428、0.0102、0.0128、0.0070);其后极部30°范围P1波峰时明显延迟,差异有高度显著性(P=0.0027)。结论糖尿病患者视力尚正常时,其黄斑中心凹感光细胞功能已有所下降;早期糖网病FOK局部反应增高可能与糖尿病早期视网膜局部血流异常增加有关;糖尿病眼FOK的峰时延迟较振幅下降更为敏感,峰时可作为糖网病检测的独立指标;早期糖网病眼视网膜功能异常并非仅局限于内层视网膜;FOK是检测早期糖尿病性视网膜病变的有效手段。 展开更多
关键词 糖尿病性视网膜病变 多焦视网膜电图 kernel反应
在线阅读 下载PDF
mf-ERG二阶kernel反应在亚临床期糖尿病视网膜病变中的变化 被引量:3
10
作者 龚铠 徐国旭 +2 位作者 刘东伟 魏静 黄江 《眼科新进展》 CAS 北大核心 2010年第1期50-52,共3页
目的探讨多焦视网膜电图(multifocal electroretinogram,mf-ERG)二阶kernel反应在亚临床期糖尿病视网膜病变的变化特点,评价其发现糖尿病早期视功能变化的作用。方法选择确诊为2型糖尿病、经散瞳眼底镜检查均未见视网膜病变患者32例,进... 目的探讨多焦视网膜电图(multifocal electroretinogram,mf-ERG)二阶kernel反应在亚临床期糖尿病视网膜病变的变化特点,评价其发现糖尿病早期视功能变化的作用。方法选择确诊为2型糖尿病、经散瞳眼底镜检查均未见视网膜病变患者32例,进行mf-ERG二阶kernel反应检查,并与正常组对照。结果mf-ERG二阶kernel反应在亚临床期糖尿病视网膜病变中已有异常:在5个环中,1-2环a波潜伏期延迟,1-5环b波潜伏期延迟,1-3环b波振幅总和、振幅密度减低,5环b波振幅密度减低;在4个象限中,鼻上象限b波振幅密度减低,颞下象限b波潜伏期延迟,振幅总和减低,颞上象限a波、b波潜伏期延迟,b波振幅总和、振幅密度减低。结论mf-ERG二阶kernel反应可较敏感地检测出亚临床期糖尿病视网膜病变的视网膜功能异常,具有临床参考价值。 展开更多
关键词 亚临床期 糖尿病视网膜病变 多焦视网膜电图 二阶kernel反应
在线阅读 下载PDF
River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型 被引量:2
11
作者 李宁 郭志顺 +1 位作者 毋琳 赵建辉 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第3期334-344,共11页
高精度提取合成孔径雷达(SAR)图像中的河流边界,对河流水势监测具有重要意义。以检测郑州7·20暴雨后黄河的健康状况为实施例,该文融合精致Lee滤波思想与卷积操作的滤波特性,提出了基于河道几何特性的优化内部权值卷积核Refined-Lee... 高精度提取合成孔径雷达(SAR)图像中的河流边界,对河流水势监测具有重要意义。以检测郑州7·20暴雨后黄河的健康状况为实施例,该文融合精致Lee滤波思想与卷积操作的滤波特性,提出了基于河道几何特性的优化内部权值卷积核Refined-Lee Kernel,进而提出了一种新型河道提取深度神经网络模型,即River-Net。为验证所提模型的有效性,该文获取了郑州7·20暴雨前后两景欧空局Sentinel-1卫星20 m分辨率干涉宽幅(IW)影像数据,利用暴雨前的影像对模型进行训练,用于提取暴雨后的黄河河道,分析黄河在暴雨后的涨势情况。实验结果表明,相比主流语义分割模型,所提模型能够更精确地在SAR图像中提取河道,对洪水灾害的检测与评估有重要应用价值。 展开更多
关键词 合成孔径雷达(SAR) Refined-Lee kernel 精致Lee滤波 神经网络 河道提取
在线阅读 下载PDF
中国城镇居民收入分布演进特征——基于非参数Kernel密度估计方法和省域区域视角 被引量:14
12
作者 陈立中 《财贸研究》 CSSCI 2010年第6期8-13,共6页
基于城镇居民人均可支配收入分组数据,运用非参数Kernel密度估计方法和MonteCarlo模拟技术,估计了1987—2008城镇居民收入分布及其演进特征。结果发现:(1)从全国城镇居民收入分布演进特征看,城镇居民收入不平等呈扩大趋势,基尼系数由0.1... 基于城镇居民人均可支配收入分组数据,运用非参数Kernel密度估计方法和MonteCarlo模拟技术,估计了1987—2008城镇居民收入分布及其演进特征。结果发现:(1)从全国城镇居民收入分布演进特征看,城镇居民收入不平等呈扩大趋势,基尼系数由0.17上升到0.33,增长近一倍,但没有观察到普遍和持久的两极分化现象(双峰分布);(2)在12个代表性省(区、直辖市)中,以经济发展模式(经济增长—收入分配)分类,广东属于平等发达型,湖南、四川、宁夏和广西属于不平等落后型,急需调整和转变增长方式;(3)从区域经济发展特征看,东部地区和东北地区收入增长较快,但收入不平等现象十分严重,中部地区和西部地区收入增长相对较慢,不平等现象相对轻微。 展开更多
关键词 收入分布 分组数据 非参数kernel密度估计方法 MONTE Carlo模拟技术
在线阅读 下载PDF
EXPONENTIAL DECAY FOR A NONLINEAR VISCOELASTIC EQUATION WITH SINGULAR KERNELS 被引量:2
13
作者 Shun-Tang Wu 《Acta Mathematica Scientia》 SCIE CSCD 2012年第6期2237-2246,共10页
The nonlinear viscoelastic wave equation |μt|^pμtt-△μ-μutt+∫^t0g(t-s)△μ(s)ds+|μ|^pU=0,in a bounded domain with initial conditions and Dirichlet boundary conditions is consid- ered. We prove that, fo... The nonlinear viscoelastic wave equation |μt|^pμtt-△μ-μutt+∫^t0g(t-s)△μ(s)ds+|μ|^pU=0,in a bounded domain with initial conditions and Dirichlet boundary conditions is consid- ered. We prove that, for a class of kernels 9 which is singular at zero, the exponential decay rate of the solution energy. The result is obtained by introducing an appropriate Lyapounov functional and using energy method similar to the work of Tatar in 2009. This work improves earlier results. 展开更多
关键词 viscoelastic wave equation kernel exponential decay memory term singular kernel
在线阅读 下载PDF
The complex variable reproducing kernel particle method for two-dimensional elastodynamics 被引量:2
14
作者 陈丽 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期59-70,共12页
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present... On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM. 展开更多
关键词 meshless method reproducing kernel particle method complex variable reproducing kernel particle method elastodvnamics
在线阅读 下载PDF
Decompesition of Kernel and Maximal Generalized Bochner-Riesz Means 被引量:1
15
作者 陆善镇 《Chinese Quarterly Journal of Mathematics》 CSCD 1989年第1期23+16-22,共8页
设l∈N,δ=k/p-k+1/2,以及<p<1.本文的主要结果是建立广义BochnerRiesz平均的核的某种分解: ((1-|ξ|~l)~σ+)^(x)=sum from f=1 to J(k,l,p) b_f((1-|ξ|~2)ь+ζ)^(x)+T(|x|),其中T满足 T^(n+1)(s)≤cmin{(1+s)_(k-n-2),(1+s)^(... 设l∈N,δ=k/p-k+1/2,以及<p<1.本文的主要结果是建立广义BochnerRiesz平均的核的某种分解: ((1-|ξ|~l)~σ+)^(x)=sum from f=1 to J(k,l,p) b_f((1-|ξ|~2)ь+ζ)^(x)+T(|x|),其中T满足 T^(n+1)(s)≤cmin{(1+s)_(k-n-2),(1+s)^(-k,p)},0<s<∞以及n=[K(1/p-1)]·作为上述分解的一个直接结果,我们得到:临界阶广义Bochner-Riesz平均在H^p(R^k)上的a.e.收敛性。 展开更多
关键词 RIESZ satisfying MAXIMAL 数学季刊 proof ARGUMENT kernel implies INEQUALITY uniquely
在线阅读 下载PDF
A deep kernel method for lithofacies identification using conventional well logs 被引量:3
16
作者 Shao-Qun Dong Zhao-Hui Zhong +5 位作者 Xue-Hui Cui Lian-Bo Zeng Xu Yang Jian-jun Liu Yan-Ming Sun jing-Ru Hao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1411-1428,共18页
How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue... How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue due to abilities of handling nonlinear features by kernel functions.Deep mining of log features indicating lithofacies still needs to be improved for kernel methods.Hence,this work employs deep neural networks to enhance the kernel principal component analysis(KPCA)method and proposes a deep kernel method(DKM)for lithofacies identification using well logs.DKM includes a feature extractor and a classifier.The feature extractor consists of a series of KPCA models arranged according to residual network structure.A gradient-free optimization method is introduced to automatically optimize parameters and structure in DKM,which can avoid complex tuning of parameters in models.To test the validation of the proposed DKM for lithofacies identification,an open-sourced dataset with seven con-ventional logs(GR,CAL,AC,DEN,CNL,LLD,and LLS)and lithofacies labels from the Daniudi Gas Field in China is used.There are eight lithofacies,namely clastic rocks(pebbly,coarse,medium,and fine sand-stone,siltstone,mudstone),coal,and carbonate rocks.The comparisons between DKM and three commonly used kernel methods(KFD,SVM,MSVM)show that(1)DKM(85.7%)outperforms SVM(77%),KFD(79.5%),and MSVM(82.8%)in accuracy of lithofacies identification;(2)DKM is about twice faster than the multi-kernel method(MSVM)with good accuracy.The blind well test in Well D13 indicates that compared with the other three methods DKM improves about 24%in accuracy,35%in precision,41%in recall,and 40%in F1 score,respectively.In general,DKM is an effective method for complex lithofacies identification.This work also discussed the optimal structure and classifier for DKM.Experimental re-sults show that(m_(1),m_(2),O)is the optimal model structure and linear svM is the optimal classifier.(m_(1),m_(2),O)means there are m KPCAs,and then m2 residual units.A workflow to determine an optimal classifier in DKM for lithofacies identification is proposed,too. 展开更多
关键词 Lithofacies identification Deepkernel method Well logs Residual unit kernel principal component analysis Gradient-free optimization
在线阅读 下载PDF
基于Kernel-ICA和X-ray成像的品种分类研究 被引量:1
17
作者 韩仲志 万剑华 《中国粮油学报》 EI CAS CSCD 北大核心 2016年第6期123-127,共5页
对农作物品种正确分类是作物分类学的重要内容,为考察X-ray成像技术对小麦品种分类研究的有效性,基于软X-ray成像仪采集的3品种(Kama,Rosa and Canadian)每个品种70个籽粒,共210个籽粒样本的X-ray扫描图像,并针对其7个形态几何特征(面... 对农作物品种正确分类是作物分类学的重要内容,为考察X-ray成像技术对小麦品种分类研究的有效性,基于软X-ray成像仪采集的3品种(Kama,Rosa and Canadian)每个品种70个籽粒,共210个籽粒样本的X-ray扫描图像,并针对其7个形态几何特征(面积、周长、紧致度、籽粒长度、宽度、偏斜度、种子腹沟长度),提出了一种使用Kernel-ICA的方法先对特征进行优化,再进行小麦品种的聚类与识别的方法,并与K-means、C-means 2种聚类方法以及基于工神经网络(ANN)和支持向量机(SVM)2种识别方法的分类结果进行比较,结果发现:分类正确率从高到低分别为:Kernel-ICA、SVM、C-means、K-means、BP-ANN,分类正确率分别为:91.9%、90.5%、89.5%、87.1%、86.9%。研究提出的Kernel-ICA的方法,聚类优化和识别能力较强,对软X-ray成像的小麦品种进行分类,已基本上满足农艺上对小麦品种分类需要,对农作物种质资源鉴别和作物品种分类研究具有积极意义。 展开更多
关键词 小麦 kernel-ICA X-ray成像品种分类
在线阅读 下载PDF
A Kernel-Based Nonlinear Representor with Application to Eigenface Classification 被引量:7
18
作者 张晶 刘本永 谭浩 《Journal of Electronic Science and Technology of China》 2004年第2期19-22,共4页
This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple tech... This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier. 展开更多
关键词 kernel based nonlinear representor face recognition EIGENFACES Gaussian kernel euclidean distance classifier
在线阅读 下载PDF
Weighted L^p-boundedness of Multilinear Oscillatory Singular Integrals with Calderón-Zygmund Kernel
19
作者 田东风 燕敦验 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第1期33-40,共8页
In this paper, weighted L p-boundedness is obtained for a class of multilinear oscillatory singular integrals with Calderón-Zygmund kernel.
关键词 multilinear oscillatory integrals Calderón-Zygmund kernel A p-weight
在线阅读 下载PDF
Improved Algorithm of Variable Bandwidth Kernel Particle Filter
20
作者 葛欣 丁恩杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第3期303-307,共5页
Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is fa... Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is facilitated to iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth. According to the characteristics of particle distribution,the bandwidth is dynamically adjusted,and the particle distribution can thus be more close to the posterior probability density model of the system. Meanwhile,the kernel density is used to estimate the weight of updating particle and the system state. The simulation results show the feasibility and effectiveness of the proposed algorithm. 展开更多
关键词 particle filter kernel density estimation kernel bandwidth SELF-ADJUSTING
在线阅读 下载PDF
上一页 1 2 224 下一页 到第
使用帮助 返回顶部