期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases 被引量:9
1
作者 Zhen Hou Jiaolong Zhang +3 位作者 Wenhui Wang Qianwen Chen Baohua Li Chaolin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期7-17,I0001,共12页
Li metal has been regarded as one of the most promising anodes for high-energy-density storage systems due to its high theoretical capacity and lowest electrochemical potential.Unfortunately,an unstable and non-unifor... Li metal has been regarded as one of the most promising anodes for high-energy-density storage systems due to its high theoretical capacity and lowest electrochemical potential.Unfortunately,an unstable and non-uniform solid electrolyte interphase(SEI)deriving from the spontaneous reaction between Li metal anode and electrolyte causes uneven Li deposition,resulting in the growth of Li dendrites and low Coulombic efficiency,which have greatly hindered the practical application of Li metal batteries.Thus,the construction of a stable SEI is an effective approach to suppress the growth of Li dendrites and enhance the electrochemical performances of Li metal anode.In this review,we firstly introduce the formation process of inferior SEI of Li metal anode and the corresponding challenges caused by the unstable SEI.Next,recent progresses to modify SEI layer through the regulation of electrolyte compositions and exsitu protective coating are summarized.Finally,the remained issues,challenges,and perspectives are also proposed on the basis of current research status and progress. 展开更多
关键词 Li metal ANODE Coulombic efficiency DENDRITES Solid ELECTROLYTE interphases Coating
在线阅读 下载PDF
Regulating solid electrolyte interphases on phosphorus/carbon anodes via localized high-concentration electrolytes for potassium-ion batteries 被引量:1
2
作者 Wei Xiao Peiyi Shi +7 位作者 Zhengkui Li Chong Xie Jian Qin Huijuan Yang Jingjing Wang Wenbin Li Jiujun Zhang Xifei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期589-605,I0016,共18页
The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dea... The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dealloying reactions,yet chronically suffering from the huge volume expansion/shrinkage with a sluggish reaction kinetics and an unsatisfactory interfacial stability against volatile electrolytes.Herein,we systematically developed a series of localized high-concentration electrolytes(LHCE) through diluting high-concentration ether electrolytes with a non-solvating fluorinated ether to regulate the formation/evolution of solid electrolyte interphases(SEI) on phosphorus/carbon(P/C) anodes for PIBs.Benefitting from the improved mechanical strength and structural stability of a robust/uniform SEI thin layer derived from a composition-optimized LHCE featured with a unique solvation structure and a superior K+migration capability,the P/C anode with noticeable pseudocapacitive behaviors could achieve a large reversible capacity of 760 mA h g^(-1)at 100 mA g^(-1),a remarkable capacity retention rate of 92.6% over 200 cycles at 800 mA g^(-1),and an exceptional rate capability of 334 mA h g^(-1)at8000 mA g^(-1).Critically,a suppressed reduction of ether solvents with a preferential decomposition of potassium salts in anion-derived interfacial reactions on P/C anode for LHCE could enable a rational construction of an outer organic-rich and inner inorganic-dominant SEI thin film with remarkable mechanical strength/flexibility to buffer huge volume variations and abundant K+diffusion channels to accelerate reaction kinetics.Additionally,the highly reversible/durable full PIBs coupling P/C anodes with annealed organic cathodes further verified an excellent practical applicability of LHCE.This encouraging work on electrolytes regulating SEI formation/evolution would advance the development of P/C anodes for high-performance PIBs. 展开更多
关键词 Potassium-ion batteries Phosphorus/carbon anodes Localized high-concentration electrolytes Solid electrolyte interphases Interfacial stability
在线阅读 下载PDF
Artificial interphases enable dendrite-free Li-metal anodes 被引量:3
3
作者 Qiankui Zhang Si Liu +2 位作者 Yitong Lu Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期198-206,共9页
Li-metal is an ideal anode that can provide rechargeable batteries with high energy density,but its application in large scale is restricted by its high activity that leads to the severe decomposition of electrolyte c... Li-metal is an ideal anode that can provide rechargeable batteries with high energy density,but its application in large scale is restricted by its high activity that leads to the severe decomposition of electrolyte components(solvents and salts) and the growth of Li dendrites.These parasitic reactions are responsible for the cycle life deterioration and the safety accidents of rechargeable Li-metal batteries.Correspondingly,much effort has been made to regulate Li/electrolyte interface chemistry.In this review,we summarize some strategies that have been developed recently to stabilize Li/electrolyte interface by constructing protective interphases on Li-metal anodes.Firstly,the currently available understandings on the instability of Li/electrolyte interface are outlined.Then,artificial interphases recently constructed exsitu and in-situ are illustrated in detail.Finally,possible approaches to acquire more efficiently protective interphases are prospected. 展开更多
关键词 Li-metal battery ANODE DENDRITE Interface chemistry INTERPHASE
在线阅读 下载PDF
Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive 被引量:5
4
作者 Yanxia Che Xiuyi Lin +6 位作者 Lidan Xing Xiongcong Guan Rude Guo Guangyuan Lan Qinfeng Zheng Wenguang Zhang Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期361-371,I0012,共12页
High energy density lithium-ion batteries using Ni-rich cathode(such as LiNi0.6Co0.2Mn0.2O2) suffer from severe capacity decay.P-toluenesulfonyl fluoride(pTSF) has been investigated as a novel film-forming electrolyte... High energy density lithium-ion batteries using Ni-rich cathode(such as LiNi0.6Co0.2Mn0.2O2) suffer from severe capacity decay.P-toluenesulfonyl fluoride(pTSF) has been investigated as a novel film-forming electrolyte additive to enhance the cycling performances of graphite/LiNi0.6Co0.2Mn0.2O2 pouch cell.In comparison with the baseline electrolyte,a small dose of pTSF can significantly improve the cyclic stability of the cell.Theoretical calculations together with experimental results indicate that pTSF would be oxidized and reduced to construct protective interphase film on the surfaces of LiNi0.6Co0.2Mn0.2O2 cathode and graphite anode,respectively.These S-containing surface films derived from pTSF effectively mitigate the decomposition of electrolyte,reduce the interphasial impedance,as well as prevent the dissolution of transition metal ions from Ni-rich cathode upon cycling at high voltage.This finding is beneficial for the practical application of high energy density graphite/LiNi0.6Co0.2Mn0.2O2 cells. 展开更多
关键词 Lithium-ion batteries Electrolyte additive P-toluenesulfonyl fluoride Electrode/electrolyte interphase Graphite/LiNi0.6Co0.2Mn0.2O2
在线阅读 下载PDF
Multi boron-doping effects in hard carbon toward enhanced sodium ion storage
5
作者 Peng Zheng Wang Zhou +7 位作者 Ying Mo Biao Zheng Miaomiao Han Qin Zhong Wenwen Yang Peng Gao Lezhi Yang Jilei Liu 《Journal of Energy Chemistry》 2025年第1期730-738,共9页
Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effect... Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effective in enhancing the Na+storage capability,however,a one-step regulation strategy to achieve simultaneous multi-scale structures optimization is highly desirable.Herein,we have systematically investigated the effects of boron doping on hard carbon’s microstructure and interface chemistry.A variety of structure characterizations show that appropriate amount of boron doping can increase the size of closed pores via rearrangement of carbon layers with improved graphitization degree,which provides more Na+storage sites.In-situ Fourier transform infrared spectroscopy/electrochemical impedance spectroscopy (FTIR/EIS) and X-ray photoelectron spectroscopy (XPS) analysis demonstrate the presence of more BC3and less B–C–O structures that result in enhanced ion diffusion kinetics and the formation of inorganic rich and robust SEI,which leads to facilitated charge transfer and excellent rate performance.As a result,the hard carbon anode with optimized boron doping content exhibits enhanced rate and cycling performance.In general,this work unravels the critical role of boron doping in optimizing the pore structure,interface chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced Na+storage performance. 展开更多
关键词 Hard carbon Sodium-ion batteries Boron doping Pore structure Electrode/electrolyte interphases
在线阅读 下载PDF
Rationally designing electrolyte additives for highly improving cyclability of LiNi_(0.5)Mn_(1.5)O_(4)/Graphite cells 被引量:2
6
作者 Zhiyong Xia Kuan Zhou +8 位作者 Xiaoyan Lin Zhangyating Xie Qiurong Chen Xiaoqing Li Jie Cai Suli Li Hai Wang Mengqing Xu Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期266-275,共10页
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo... High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries. 展开更多
关键词 Electrolyte additive Design and synthesis CYCLABILITY High voltage batteries Cathode and anode interphases
在线阅读 下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
7
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
在线阅读 下载PDF
Construction of a High‑Performance Composite Solid Electrolyte Through In‑Situ Polymerization within a Self‑Supported Porous Garnet Framework 被引量:3
8
作者 An‑Giang Nguyen Min‑Ho Lee +1 位作者 Jaekook Kim Chan‑Jin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期56-70,共15页
Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and in... Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs. 展开更多
关键词 Scalable tape-casting method Self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12) Composite solid electrolyte LiF-and B-rich interphase layers
在线阅读 下载PDF
Rational design of F,N-rich artificial interphase via chemical prelithiation initiation strategy enabling high coulombic efficiency and stable micro-sized SiO anodes 被引量:1
9
作者 Quanyan Man Hengtao Shen +3 位作者 Chuanliang Wei Baojuan Xi Shenglin Xiong Jinkui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期224-232,共9页
Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid ... Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid electrolyte interface(SEI),which induce low energy,short cycling life,and poor rate properties.To address these drawbacks of SiO,we achieve in-situ construction of robust and fast-ion conducting F,N-rich SEI layer on prelithiated micro-sized SiO(P-μSiO)via the simple and continuous treatment ofμSiO in mild lithium 4,4′-dimethylbiphenyl solution and nonflammable hexafluorocyclotriphosphazene solution.Chemical prelithiation eliminates irreversible capacity through pre-forming inactive lithium silicates.Meanwhile,the symbiotic F,N-rich SEI with good mechanical stability and fast Li^(+)permeability is conductive to relieve volume expansion ofμSiO and boost the Li+diffusion kinetics.Consequently,the P-μSiO realizes an impressive electrochemical performance with an elevated ICE of 99.57%and a capacity retention of 90.67%after 350 cycles.Additionally,the full cell with P-μSiO anode and commercial LiFePO_(4) cathode displays an ICE of 92.03%and a high reversible capacity of 144.97 mA h g^(-1).This work offers a general construction strategy of robust and ionically conductive SEI for advanced LIBs. 展开更多
关键词 Chemical prelithiation Silicon monoxide SEI Lithium-ion batteries INTERPHASE engineering
在线阅读 下载PDF
Electrolyte Design for Low‑Temperature Li‑Metal Batteries:Challenges and Prospects 被引量:1
10
作者 Siyu Sun Kehan Wang +3 位作者 Zhanglian Hong Mingjia Zhi Kai Zhang Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期365-382,共18页
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ... Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries. 展开更多
关键词 Solid electrolyte interphase Li metal Low temperature Electrolyte design BATTERIES
在线阅读 下载PDF
Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries 被引量:1
11
作者 Zejun Sun Jinlin Yang +18 位作者 Hongfei Xu Chonglai Jiang Yuxiang Niu Xu Lian Yuan Liu Ruiqi Su Dayu Liu Yu Long Meng Wang Jingyu Mao Haotian Yang Baihua Cui Yukun Xiao Ganwen Chen Qi Zhang Zhenxiang Xing Jisheng Pan Gang Wu Wei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期1-17,共17页
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom... An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles. 展开更多
关键词 Cationic surfactant Lithium nitrate additive Solid-electrolyte interphase Electric double layer Lithium metal batteries
在线阅读 下载PDF
All-fluorinated electrolyte for non-flammable batteries with ultra-high specific capacity at 4.7 V
12
作者 Zhe Wang Zhuo Li +5 位作者 Jialong Fu Sheng Zheng Rui Yu Xiaoyan Zhou Guanjie He Xin Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1601-1609,共9页
Li metal batteries(LMBs)with LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathodes could release a specific energy of>500 Wh kg^(-1) by increasing the charge voltage.However,high-nickel cathodes working at high voltages ... Li metal batteries(LMBs)with LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathodes could release a specific energy of>500 Wh kg^(-1) by increasing the charge voltage.However,high-nickel cathodes working at high voltages accelerate degradations in bulk and at interfaces,thus significantly degrading the cycling lifespan and decreasing the specific capacity.Here,we rationally design an all-fluorinated electrolyte with addictive tri(2,2,2-trifluoroethyl)borate(TFEB),based on 3,3,3-fluoroethylmethylcarbonate(FEMC)and fluoroethylene carbonate(FEC),which enables stable cycling of high nickel cathode(LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),NMC811)under a cut-off voltage of 4.7 V in Li metal batteries.The electrolyte not only shows the fire-extinguishing properties,but also inhibits the transition metal dissolution,the gas production,side reactions on the cathode side.Therefore,the NMC811||Li cell demonstrates excellent performance by using limited Li and high-loading cathode,delivering a specific capacity>220 mA h g^(-1),an average Coulombic efficiency>99.6%and capacity retention>99.7%over 100 cycles. 展开更多
关键词 Fluorinated electrolyte Li metal batteries Solid electrolyte interphase Cathode electrolyte interphase Coulombic efficiency
在线阅读 下载PDF
An efficient recycling strategy to eliminate the residual“impurities”while heal the damaged structure of spent graphite anodes
13
作者 Dan Yang Ying Yang +7 位作者 Haoran Du Yongsheng Ji Mingyuan Ma Yujun Pan Xiaoqun Qi Quan Sun Kaiyuan Shi Long Qie 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1027-1034,共8页
The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate ... The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate their useless components(mainly the degraded solid electrolyte interphase,SEI)and reconstruct their damaged structure.Herein,a facile and efficient strategy is proposed to recycle the spent graphite on the basis of the careful investigation of the composition of the cycled graphite anodes and the rational design of the regeneration processes.The regenerated graphite,which is revitalized by calcination treatment and acid leaching,delivers superb rate performance and a high specific capacity of 370 mAh g^(-1)(~99% of its theoretical capacity)after 100 cycles at 0.1 C,superior to the commercial graphite anodes.The improved electrochemical performance could be attributed to unchoked Li^(+) transport channels and enhanced charge transfer reaction due to the effective destruction of the degraded SEI and the full recovery of the damaged structure of the spent graphite.This work clarifies that the electrochemical performance of the regenerated graphite could be deteriorated by even a trace amount of the residual“impurity”and provides a facile method for the efficient regeneration of graphite anodes. 展开更多
关键词 GRAPHITE ANODE REGENERATION Solid electrolyte interphase Spent lithium-ion battery
在线阅读 下载PDF
Lamellar sulfonated acid polymer-initiated in situ construction of robust LiF-rich SEI enabling superior charge transport for ultrastable and fast charging silicon anodes
14
作者 Jungsoo Park Song Kyu Kang +4 位作者 Junhyuk Ji Hwichan Ahn Gwan Hyeon Park Minho Kim Won Bae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期134-143,共10页
The extreme volume expansion of the silicon(Si) anodes during repeated cycles seriously induces undesirable interfacial side reactions,forming an unstable solid electrolyte interphase(SEI) that degrades the electrode ... The extreme volume expansion of the silicon(Si) anodes during repeated cycles seriously induces undesirable interfacial side reactions,forming an unstable solid electrolyte interphase(SEI) that degrades the electrode integrity and cycle stability in lithium-ion batteries,limiting their practical applications.Despite considerable efforts to stabilize the SEI through surface modification,challenges persist in the development of high-performance Si anodes that effectively regulate intrinsic SEI properties and simultaneously facilitate electron/ion transport.Here,a highly conductive and organic electrolyte-compatible lamellar p-toluenesulfonic acid-doped polyaniline(pTAP) layer is proposed for constructing a robust artificial SEI on Si nanoparticles to achieve fast charging,lo ng-term cycle lifespan and high areal capacity.The spatially uniform pTAP layer,formed through a facile direct-encapsulation approach assisted by enriched hydrogen bonding,contributes to the effective formation of in situ SEI with an even distribution of the LiF-rich phase in its interlamination spaces.Furthermore,the integrated artificial SEI facilitates isotropic ion/electron transport,increased robustness,and effectively dissipates stress from volume changes.Consequently,a notably high rate performance of 570 mA h g^(-1),even at a substantially high current density of 10 A g^(-1),is achieved with excellent cyclic stability by showing a superior capacity over 1430 mA h g^(-1) at 1 A g^(-1) after 250 cycles and a high areal capacity of ca.2 mA h cm^(-2) at 0.5 C in a full cell system.This study demonstrates that the rational design of conductive polymers with SEI modulation for surface protection has great potential for use in high-energy-density Si anodes. 展开更多
关键词 Lithium-ion battery Silicon anode Conductive polymers Solid electrolyte interphase
在线阅读 下载PDF
A highly stable zinc anode protected by a corrosion inhibitor for seawater-based zinc-ion batteries
15
作者 Bowei Shi Rongwei Meng +7 位作者 Xin Jiang Yingxin Liu Huaiyuan Wang Quanjun Tang Li Wang Chen Zhang Guowei Ling Quan-Hong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期332-341,I0006,共11页
The island-based energy storage is of urgent need for the grid construction combined with renewable energy for offshore operation.The direct use of seawater as a substitute of deionized water shows its great promise f... The island-based energy storage is of urgent need for the grid construction combined with renewable energy for offshore operation.The direct use of seawater as a substitute of deionized water shows its great promise for aqueous zinc-ion batteries in such a specific situation.However,the metal corrosion,dendrite growth,and hydrogen evolution stand out in the harsh seawater environment.To address these challenges,we proposed a corrosion inhibitor that was effective in the field of metal anti-corrosion,2-phosphonobutane-1,2,4-tricarboxylic acid(PBTCA),to inhibit anode corrosion caused by Cl-and active H_(2)O molecules by forming a stable solid electrolyte interphase(SEI)film in the seawater-based electrolyte.Besides,PBTCA can chelate with other cations present in seawater,such as Ca^(2+)and Mg^(2+),thereby preventing the aggregation and precipitation of sparingly soluble species.Under a current density of5 mA cm^(-2),the seawater-based zinc-ion battery exhibited an exceptional cycle life exceeding 2000 h and maintained a Coulombic efficiency of over 99.6%after 2000 cycles.Additionally,the performance of the Zn||ZVO full battery was significantly enhanced with the addition of PBTCA.This study provides a simple,low-cost,and efficient approach for making the seawater-based zinc-ion batteries useable. 展开更多
关键词 Zinc-ion batteries ANTI-CORROSION Seawater Solid electrolyte interphase
在线阅读 下载PDF
Ion-dipole regulation based on bidentate solvent for stabilizing high-voltage lithium metal batteries
16
作者 Zhengyi Xu Lin Sun +4 位作者 Yang Yang Xuejia Li Yuncong Liu Xinxiu Yan Tao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期432-440,共9页
The poor compatibility of ester electrolytes with lithium metal anode severely limits its use in high voltage lithium metal batteries(LMBs).In this work,a bidentate solvent 1,2-diethoxyethane(DEE) is introduced into e... The poor compatibility of ester electrolytes with lithium metal anode severely limits its use in high voltage lithium metal batteries(LMBs).In this work,a bidentate solvent 1,2-diethoxyethane(DEE) is introduced into ester electrolyte to regulate the ion-dipole interactions to enhance the solubility of LiNO_(3),which enables compatibility with Li anode and maintains the high voltage cathode stability.In the designed electrolyte,the steric effect of DEE facilitates the participation of NO_(3)^(-)and PF_6^(-)anions in the Li^(+) solvation structure,thus promoting the generation of inorganic-rich solid electrolyte interphase(SEI).And the low viscosity of DEE also ensures that the ester electrolyte poses good interracial wettability.As a result,our designed electrolyte enables the high-loading Li‖NCM622 and Li‖NCM811(^(3) mA h cm^(-2)) full cells to achieve stable cycling over 200 cycles,8 times longer than that of a conventional ester electrolyte.This work suggests that regulation of intermolecular interactions in conventional ester electrolytes is a scalable and effective approach to achieve excellent electrochemical performance of LMBs. 展开更多
关键词 Ion-dipole interactions Solvation structure Solid electrolyte interphase Ester electrolyte Li metal battery
在线阅读 下载PDF
Dual-salt poly(tetrahydrofuran) electrolyte enables quasi-solid-state lithium metal batteries to operate at -30 ℃
17
作者 Zhiyong Li Zhuo Li +1 位作者 Rui Yu Xin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期456-463,共8页
The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migr... The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures. 展开更多
关键词 Poly(tetrahydrofuran) Dual-salt electrolyte Solidel ectrolyte interphase Low-temperature operation Quasi-solid-state battery
在线阅读 下载PDF
In-situ coupling construction of interface bridge to enhance electrochemical stability of all solid-state lithium metal batteries
18
作者 Qianwei Zhang Rong Yang +7 位作者 Chao Li Lei Mao Bohai Wang Meng Luo Yinglin Yan Yiming Zou Lisheng Zhong Yunhua Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期18-26,I0003,共10页
Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical pro... Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical properties.However,the organic/inorganic interface is incompatible,resulting in slow lithium-ion transport at the interface.Therefore,the compatibility of organic/inorganic interface is an urgent problem to be solved.Inspired by the concept of“gecko eaves”,polymer-based composite solid electrolytes with dense interface structures were designed.The bridging of organic/inorganic interfaces was established by introducing silane coupling agent(3-chloropropyl)trimethoxysilane(CTMS)into the PEO-3D-LLZAO(PL)electrolyte.The in-situ coupling reaction improves the interface affinity,strengthens the organic/inorganic interaction,reduces the interface resistance,and thus achieves an efficient interface ion transport network.The prepared PEO-3D-LLZAO-CTMS(PLC)electrolyte exhibits enhanced ionic conductivity of 6.04×10^(-4)S cm^(-1)and high ion migration number(0.61)at 60℃and broadens the electrochemical window(5.1 V).At the same time,the PLC electrolyte has good thermal stability and high mechanical properties.Moreover,the Li Fe PO_(4)|PLC|Li battery has excellent rate performance and cycling stability with a capacity decay rate of 2.2%after 100 cycles at 60℃and 0.1 C.These advantages of PLC membranes indicate that this design approach is indeed practical,and the in-situ coupling method provides a new approach to address interface compatibility issues. 展开更多
关键词 Organic/inorganic interphase Coupling effect Composite electrolyte Interface compatibility
在线阅读 下载PDF
Stabilization of cathode electrolyte interphase for aqueous zinc-ion batteries
19
作者 Zhenjie Yao Wenyao Zhang Junwu Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期359-386,共28页
Aqueous zinc-ion battery systems are attractive for next-generation energy storage devices,however,the unstable electrode electrolyte interphase,especially cathode electrolyte interphase(CEI),has induced rapid capacit... Aqueous zinc-ion battery systems are attractive for next-generation energy storage devices,however,the unstable electrode electrolyte interphase,especially cathode electrolyte interphase(CEI),has induced rapid capacity attenuation,insufficient cycle life,and severe safety issues.Evolving the researching of CEI formation,composition,dynamic structure,and reaction mechanisms would help in understanding the fundamental electrochemistry at CEI such as electron and ion transport processes,further strengthening the specific capacity,rate,and cycle performance of the cathode materials.In this review,we summarized the latest progress in understanding interfacial reaction mechanisms and ion dynamic behavior,emphasizing the impact of surface-specific adsorption and solvation behaviors on the interface's ultimate structure and chemical composition.Subsequently,the significant challenges that persist in CEI formation mechanisms,such as cathodic dissolution,by-product formation,electrostatic interactions,constrained electrochemical windows,oxygen evolution reaction,overpotentials,phase transitions,and additional factors,were discussed.These challenges are explored to identify triggers contributing to the depletion of active materials and alterations in the composition or state of the CEI.Ultimately,with a deep comprehension of interfacial behaviors,the review articulates innovative optimization strategies through a detailed categorization of approaches in electrolyte engineering,cathode engineering,and artificial CEI development.Furthermore,future challenges and development directions of CEI are presented.We hope to offer insights for constructing robust CEI films to achieve high performance aqueous zinc-ion batteries. 展开更多
关键词 Aqueous zinc-ion batteries Cathode-electrolyte interphase Energy storage
在线阅读 下载PDF
Interfacial fusion-enhanced 11 μm-thick gel polymer electrolyte for high-performance lithium metal batteries
20
作者 Ying Jiang Xinyue Hong +3 位作者 Peng Huang Jing Shi Wen Yan Chao Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期58-66,共9页
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei... In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries. 展开更多
关键词 Ultrathin gel polymer electrolyte Integrated electrode/electrolyte structure Quasi-solid-state lithium metal battery Solid-electrolyte interphase
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部