To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
To understand the evolution of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin,this paper documents the Miocene sequence stratigraphic framework,the depositional characteristics and the controllin...To understand the evolution of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin,this paper documents the Miocene sequence stratigraphic framework,the depositional characteristics and the controlling factors of the gravity flow system.Based on the establishment of high-resolution sequence stratigraphic framework,lithofacies characteristics and sedimentary units of the gravity flow deposits in the region are identified by using seismic,well logging and core data comprehensively,and the sedimentary evolution process is revealed and the controlling factors are discussed.The Miocene can be divided into four 3 rd-order sequences(SQ1-SQ4).The gravity flow deposits mainly include siliciclastic rock and pelite.The main sedimentary units include slumping deposits,mass transport deposits(MTD),channel fills,levee-overbank deposits,and frontal lobes.In the Early Miocene(SQ1),mainly gull-wing,weakly restricted to unrestricted depositional channel-overbank complexes and lobes were formed.In the early Middle Miocene(SQ2),W-shaped and weakly restricted erosional-depositional channels(multi-phase superposition)were subsequently developed.In the late Middle Miocene(SQ3),primarily U-shaped and restricted erosional channels were developed.In the Late Miocene(SQ4),largely V-shaped and deeply erosional isolated channels were formed in the study area.Climate cooling and continuous fall of the sea level made the study area change from toe of slope-submarine plain to lower continental slope,middle continental slope and finally to upper continental slope,which in turn affected the strength of the gravity flow.The three times of tectonic uplifting and climate cooling in the West African coast provided abundant sediment supply for the development of gravity flow deposits.Multistage activities of salt structures played important roles in redirecting,restricting,blocking and destroying the gravity flow deposits.Clarifying the characteristics,evolution and controlling factors of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin can provide reference for deep-water petroleum exploration in this basin.展开更多
To reveal the development characteristics and distribution of gravity flow sedimentary system under micro-paleogeomorphologic units of the Chang 7 Member of Triassic Yanchang Formation in the southwestern Ordos Basin,...To reveal the development characteristics and distribution of gravity flow sedimentary system under micro-paleogeomorphologic units of the Chang 7 Member of Triassic Yanchang Formation in the southwestern Ordos Basin,on the basis of the restoration of the paleogeomorphological form of the Chang 7 depositional period by the impression method,each micro-paleogeomorphologic unit was depicted in-depth,and the characteristics and development models of gravity flow deposits in the study area were studied in combination with outcrop,core,mud logging and log data.The results show that:(1)The paleogeomorphology in the Chang 7 depositional period was an asymmetrical depression,wide and gentle in the northeast and steep and narrow in the southwest.Three sub-paleogeomorphologic units were developed in the basin,including gentle paleo-slope,paleo-slope and paleo-depression,and they can be further subdivided into eight micro-paleogeomorphologic units:bulge,groove,slope break belt,plain of lake bottom,deep depression of lake bottom,paleo-channel,paleo-ridge of lake bottom,and paleo-uplift of lake bottom.(2)There are 9 types of lithofacies and 4 types of lithofacies assemblages of Chang 7 Member.According to lithofacies composition and lithofacies vertical combination,the gravity flow deposit is further divided into 5 types of microfacies:restricted channel,unrestricted channel,natural levee,inter-channel,lobe.(3)Paleogeomorphology plays an important role in controlling sediment source direction,type and spatial distribution of sedimentary microfacies,genetic types and distribution of sand bodies in Chang 7 Member.展开更多
The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the ...The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.展开更多
Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis me...Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of the NLSE is analyzed, and the region of the MI for gravity waves(the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive(negative)vorticity on MI can be balanced out by that of uniform down(up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it.展开更多
Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid proper...Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes.展开更多
块体搬运沉积(mass transport deposits,MTDs)是目前海洋研究方面的热点,而块体搬运沉积内部具有什么样的形态特征依然不够明确。该文基于琼东南盆地陵水凹陷高精度三维地震资料,描述了陵水凹陷L区块体搬运沉积三维地震构型,研究了盆地...块体搬运沉积(mass transport deposits,MTDs)是目前海洋研究方面的热点,而块体搬运沉积内部具有什么样的形态特征依然不够明确。该文基于琼东南盆地陵水凹陷高精度三维地震资料,描述了陵水凹陷L区块体搬运沉积三维地震构型,研究了盆地内深水沉积物内部结构、特征及形成机制,识别了侵蚀擦痕、逆冲推覆构造、挤压脊、水道等构造特征,并结合剖面、平面特征推测其成因及其分布规律,探讨了MTDs形成的特殊构造,并提出了三个假设:在流动开始之前已存在,并在层内被动运输;在流动运动中形成;在流动停滞期间形成。MTDs沉积层内部致密,鲜有贯穿性构造,是油气储集中良好的盖层。展开更多
The deep-water systems in different types of sedimentary basins exhibit significant variability.Current knowledge of deep-water deposition is mainly derived from deep-marine turbidite systems.However,the characteristi...The deep-water systems in different types of sedimentary basins exhibit significant variability.Current knowledge of deep-water deposition is mainly derived from deep-marine turbidite systems.However,the characteristics and differences of sub-lacustrine gravity flow deposition systems have been a research focus in the fields of sedimentology and petroleum geology.This study investigates the facies archi-tecture,depositional processes,and sediment distribution patterns of a sub-lacustrine debrite system in the Eocene Dongying Rift of the Bohai Bay Basin,China,through the analysis of integrated core data,3-D seismic data,and well-log data.Nine facies have been identified within the debrite system,representing various depositional processes such as sandy debris flow,muddy debris flow,turbidity currents,sandy slide,sandy slide/slump,and mud flow.Our research indicates that the sub-lacustrine system is primarily influenced by debris flow rather than turbidity currents,as supported by facies quantification,inter-pretation,and flow rheology analysis.Additionally,we have identified five basic facies building blocks in debrite systems,including slide masses,slump masses,debrite channels,debrite lobes,and turbidite sheets.We have also elucidated and proposed detailed sedimentary processes,flow transport,and transformation within the sub-lacustrine system through analysis of flow origins,facies sequences,and distribution characteristics.Our findings highlight the evolutionary progression from delta-front collapse to sandy slide/slump,sandy debris flow,and finally muddy debris flow.The efficient generation of turbidity currents from parental landslides on sand-prone slopes is deemed unlikely due to rift-basin morphology and transport distances.The formation of the five basic facies building blocks is closely linked to depositional processes and dominant flow types.Consequently,we present a deep-water depositional model for sub-lacustrine debrite systems,focusing on flow dynamics,sediment distribu-tion patterns,and basin morphology within deep lacustrine rifts.This model offers valuable insights into the variability of deep-water deposition in diverse basin settings and aids in predicting lithologic res-ervoirs during deep-water hydrocarbon exploration.展开更多
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-002)National Natural Science Foundation of China(91328201)。
文摘To understand the evolution of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin,this paper documents the Miocene sequence stratigraphic framework,the depositional characteristics and the controlling factors of the gravity flow system.Based on the establishment of high-resolution sequence stratigraphic framework,lithofacies characteristics and sedimentary units of the gravity flow deposits in the region are identified by using seismic,well logging and core data comprehensively,and the sedimentary evolution process is revealed and the controlling factors are discussed.The Miocene can be divided into four 3 rd-order sequences(SQ1-SQ4).The gravity flow deposits mainly include siliciclastic rock and pelite.The main sedimentary units include slumping deposits,mass transport deposits(MTD),channel fills,levee-overbank deposits,and frontal lobes.In the Early Miocene(SQ1),mainly gull-wing,weakly restricted to unrestricted depositional channel-overbank complexes and lobes were formed.In the early Middle Miocene(SQ2),W-shaped and weakly restricted erosional-depositional channels(multi-phase superposition)were subsequently developed.In the late Middle Miocene(SQ3),primarily U-shaped and restricted erosional channels were developed.In the Late Miocene(SQ4),largely V-shaped and deeply erosional isolated channels were formed in the study area.Climate cooling and continuous fall of the sea level made the study area change from toe of slope-submarine plain to lower continental slope,middle continental slope and finally to upper continental slope,which in turn affected the strength of the gravity flow.The three times of tectonic uplifting and climate cooling in the West African coast provided abundant sediment supply for the development of gravity flow deposits.Multistage activities of salt structures played important roles in redirecting,restricting,blocking and destroying the gravity flow deposits.Clarifying the characteristics,evolution and controlling factors of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin can provide reference for deep-water petroleum exploration in this basin.
基金Supported by the National Natural Science Foundation of China(42102170)National Key Basic Research and Development Program(973 Program),China(2014CB239003).
文摘To reveal the development characteristics and distribution of gravity flow sedimentary system under micro-paleogeomorphologic units of the Chang 7 Member of Triassic Yanchang Formation in the southwestern Ordos Basin,on the basis of the restoration of the paleogeomorphological form of the Chang 7 depositional period by the impression method,each micro-paleogeomorphologic unit was depicted in-depth,and the characteristics and development models of gravity flow deposits in the study area were studied in combination with outcrop,core,mud logging and log data.The results show that:(1)The paleogeomorphology in the Chang 7 depositional period was an asymmetrical depression,wide and gentle in the northeast and steep and narrow in the southwest.Three sub-paleogeomorphologic units were developed in the basin,including gentle paleo-slope,paleo-slope and paleo-depression,and they can be further subdivided into eight micro-paleogeomorphologic units:bulge,groove,slope break belt,plain of lake bottom,deep depression of lake bottom,paleo-channel,paleo-ridge of lake bottom,and paleo-uplift of lake bottom.(2)There are 9 types of lithofacies and 4 types of lithofacies assemblages of Chang 7 Member.According to lithofacies composition and lithofacies vertical combination,the gravity flow deposit is further divided into 5 types of microfacies:restricted channel,unrestricted channel,natural levee,inter-channel,lobe.(3)Paleogeomorphology plays an important role in controlling sediment source direction,type and spatial distribution of sedimentary microfacies,genetic types and distribution of sand bodies in Chang 7 Member.
基金Supported by the Research on Exploration and Development Technology and New Exploration Field of High Temperature and Pressure Gas Reservoir in Western South China Sea(CNOOC-KJ135ZDXM38ZJ02ZJ)National Natural Science Foundation of China(41972129)National Science and Technology Key Project(2016ZX05024-005,2016ZX05026-003-005)。
文摘The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFC1401404 and 2017YFA0604102)the National Natural Science Foundation of China(Grant No.41830533)
文摘Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of the NLSE is analyzed, and the region of the MI for gravity waves(the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive(negative)vorticity on MI can be balanced out by that of uniform down(up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it.
基金The project supported by National Natural Science Foundation of China(No.51991364,51974347)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-184-002。
文摘Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes.
文摘块体搬运沉积(mass transport deposits,MTDs)是目前海洋研究方面的热点,而块体搬运沉积内部具有什么样的形态特征依然不够明确。该文基于琼东南盆地陵水凹陷高精度三维地震资料,描述了陵水凹陷L区块体搬运沉积三维地震构型,研究了盆地内深水沉积物内部结构、特征及形成机制,识别了侵蚀擦痕、逆冲推覆构造、挤压脊、水道等构造特征,并结合剖面、平面特征推测其成因及其分布规律,探讨了MTDs形成的特殊构造,并提出了三个假设:在流动开始之前已存在,并在层内被动运输;在流动运动中形成;在流动停滞期间形成。MTDs沉积层内部致密,鲜有贯穿性构造,是油气储集中良好的盖层。
基金supported by the National Natural Science Foundation of China(No.42202170,42172109,42072140,42102133,42202122)the Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1166,CSTB2022NSCQ-JQX0031)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201511,KJZD-M202101502)Project of Chongqing University of Science&Technology(ckrc2022028,YKJCX2320109).
文摘The deep-water systems in different types of sedimentary basins exhibit significant variability.Current knowledge of deep-water deposition is mainly derived from deep-marine turbidite systems.However,the characteristics and differences of sub-lacustrine gravity flow deposition systems have been a research focus in the fields of sedimentology and petroleum geology.This study investigates the facies archi-tecture,depositional processes,and sediment distribution patterns of a sub-lacustrine debrite system in the Eocene Dongying Rift of the Bohai Bay Basin,China,through the analysis of integrated core data,3-D seismic data,and well-log data.Nine facies have been identified within the debrite system,representing various depositional processes such as sandy debris flow,muddy debris flow,turbidity currents,sandy slide,sandy slide/slump,and mud flow.Our research indicates that the sub-lacustrine system is primarily influenced by debris flow rather than turbidity currents,as supported by facies quantification,inter-pretation,and flow rheology analysis.Additionally,we have identified five basic facies building blocks in debrite systems,including slide masses,slump masses,debrite channels,debrite lobes,and turbidite sheets.We have also elucidated and proposed detailed sedimentary processes,flow transport,and transformation within the sub-lacustrine system through analysis of flow origins,facies sequences,and distribution characteristics.Our findings highlight the evolutionary progression from delta-front collapse to sandy slide/slump,sandy debris flow,and finally muddy debris flow.The efficient generation of turbidity currents from parental landslides on sand-prone slopes is deemed unlikely due to rift-basin morphology and transport distances.The formation of the five basic facies building blocks is closely linked to depositional processes and dominant flow types.Consequently,we present a deep-water depositional model for sub-lacustrine debrite systems,focusing on flow dynamics,sediment distribu-tion patterns,and basin morphology within deep lacustrine rifts.This model offers valuable insights into the variability of deep-water deposition in diverse basin settings and aids in predicting lithologic res-ervoirs during deep-water hydrocarbon exploration.