期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An efficient electrocatalytic system composed of nickel oxide and nitroxyl radical for the oxidation of bio-platform molecules to dicarboxylic acids 被引量:1
1
作者 Kai Zhang Zixiang Zhan +5 位作者 Minzhi Zhu Haiwei Lai Xiangyang He Weiping Deng Qinghong Zhang Ye Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期58-67,I0003,共11页
Selective oxidation of biomass and its derivatives to dicarboxylic acids represents a promising route for biomass valorization.However,the co-presence of multiple functional groups in biomass molecules makes the selec... Selective oxidation of biomass and its derivatives to dicarboxylic acids represents a promising route for biomass valorization.However,the co-presence of multiple functional groups in biomass molecules makes the selective oxidation of particular functional a challenging task.Here,we demonstrate an efficient electrocatalytic system consisting of nickel oxide(NiO)and a nitroxyl radical,i.e.,2,2,6,6-tetrame thylpiperidine-1-oxyl(TEMPO)or 4-acetamido-TEMPO(ACT),for the selective oxidation of key bioplatform molecules including glucose,xylose and 5-hydroxymethylfurfural(HMF)into corresponding dicarboxylic acids,i.e.,glucaric acid,xylaric acid,and 2,5-furandicarboxylic acid(FDCA).NiO is clarified as the active catalyst for the oxidation of aldehyde in bio-platform molecules to carboxylic acid,while TEMPO or ACT is responsible for the oxidation of primary alcohol to aldehyde.The combination of NiO and TEMPO or ACT significantly accelerated the tandem oxidation of aldehyde and hydroxyl groups in glucose,xylose and HMF,thus achieving excellent yields(83%-99%)of dicarboxylic acids.Moreover,the combination catalyst enables the selective oxidation of glucose and xylose with high concentrations(e.g.,20 wt%),which offers a promising strategy for biomass valorization. 展开更多
关键词 BIOMASS ELECTROCATALYSIS NIO Nitroxyl radical dicarboxylic acid
在线阅读 下载PDF
Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural
2
作者 Jing Lei Huijie Zhang +4 位作者 Jian Yang Jia Ran Jiqiang Ning Haiyan Wang Yong Hu 《Journal of Energy Chemistry》 2025年第1期792-814,共23页
Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ... Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA. 展开更多
关键词 Electrochemical oxidation of 5- HYDROXYMETHYLFURFURAL 2 5-Furan dicarboxylic acid Structural design MECHANISM ELECTROCATALYSTS
在线阅读 下载PDF
琥珀酸
3
作者 蒋明 《精细石油化工》 CAS CSCD 1989年第3期62-64,共3页
又名:丁二酸(Butanediacid);亚乙基二羧酸(Ethylene dicarboxylic acid) 实验式:C<sub>4</sub>H<sub>6</sub>O<sub>4</sub> 分子量:118.09 结构式: 物化性能:本品为无嗅。
关键词 dicarboxylic 二羧酸 亚乙基 ETHYLENE 实验式 丁二酸 主要生产厂家 物化性能 灼烧残渣 加氢反应
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部