期刊文献+
共找到3,478篇文章
< 1 2 174 >
每页显示 20 50 100
Nanograting‑Based Dynamic Structural Colors Using Heterogeneous Materials
1
作者 Jingang Wang Haibo Yu +6 位作者 Jianchen Zheng Yuzhao Zhang Hongji Guo Ye Qiu Xiaoduo Wang Yongliang Yang Lianqing Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期138-151,共14页
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov... Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips. 展开更多
关键词 Dynamic structural colors Four-dimensional printing PH-RESPONSIVE Nanogrid Heterogeneous materials
在线阅读 下载PDF
Ultra‑High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception
2
作者 Hao Yin Yanting Li +4 位作者 Zhiying Tian Qichao Li Chenhui Jiang Enfu Liang Yiping Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期432-446,共15页
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg... Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy. 展开更多
关键词 Flexible piezoelectric filaments ANISOTROPIC Ultra-high sensitivity structural health detection Texture recognition
在线阅读 下载PDF
Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural
3
作者 Jing Lei Huijie Zhang +4 位作者 Jian Yang Jia Ran Jiqiang Ning Haiyan Wang Yong Hu 《Journal of Energy Chemistry》 2025年第1期792-814,共23页
Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ... Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA. 展开更多
关键词 Electrochemical oxidation of 5- HYDROXYMETHYLFURFURAL 2 5-Furan dicarboxylic acid structural design MECHANISM ELECTROCATALYSTS
在线阅读 下载PDF
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
4
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan Basin
在线阅读 下载PDF
Self‑Healing Dynamic Hydrogel Microparticles with Structural Color for Wound Management 被引量:1
5
作者 Li Wang Xiaoya Ding +5 位作者 Lu Fan Anne M.Filppula Qinyu Li Hongbo Zhang Yuanjin Zhao Luoran Shang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期177-190,共14页
Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morpho... Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morphology and structure to enhance flexibility and effectiveness in wound management.To achieve these,we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.The microsphere comprised a photothermal-responsive inverse opal framework,which was constructed by hyaluronic acid methacryloyl,silk fibroin methacryloyl and black phosphorus quantum dots(BPQDs),and was further re-filled with a dynamic hydrogel.The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran(DEX-CA and DEX-BA).Notably,the composite microspheres can be applied arbitrarily,and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel.Additionally,eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism.Moreover,effective monitoring of the drug release process can be achieved through visual color variations.The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management.These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications. 展开更多
关键词 Black phosphorus structural color Dynamic hydrogel Inverse opal Wound management
在线阅读 下载PDF
Enhanced structural damage behavior of liquid-filled tank by reactive material projectile impact 被引量:1
6
作者 Jianwen Xie Yuanfeng Zheng +4 位作者 Zhenyang Liu Chengzhe Liu Aoxin Liu Pengwan Chen Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期211-229,共19页
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s... A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior. 展开更多
关键词 Reactive material projectile Hydrodynamic ram Enhanced structural damage Liquid-filled tank Impact
在线阅读 下载PDF
Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode:From O3-Type to O2-Type Structural Design 被引量:1
7
作者 Guohua Zhang Xiaohui Wen +2 位作者 Yuheng Gao Renyuan Zhang Yunhui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期81-102,共22页
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H... Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed. 展开更多
关键词 Lithium-ion batteries Li-rich layered oxide Voltage decay Migration of transition metal ions O2-type structural design
在线阅读 下载PDF
Pressure-induced magnetic phase and structural transition in SmSb_(2)
8
作者 李涛 王舒阳 +3 位作者 陈绪亮 陈春华 房勇 杨昭荣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期473-478,共6页
Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) S... Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) SmSb_(2) through electrical transport and synchrotron x-ray diffraction measurements.At P_(C)~2.5 GPa,we found a pressure-induced magnetic phase transition accompanied by a Cmca→P4/nmm structural phase transition.In the pristine AFM phase below P_(C),the AFM transition temperature of SmSb_(2) is insensitive to pressure;in the emergent magnetic phase above P_(C),however,the magnetic critical temperature increases rapidly with increasing pressure.In addition,at ambient pressure,the magnetoresistivity(MR) of SmSb_(2) increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2 K.With increasing pressure above P_(C),the MR behavior remains similar to that observed at ambient pressure,both in terms of temperature-and field-dependent MR.This leads us to argue an AFM-like state for SmSb_(2) above P_(C).Within the investigated pressure of up to 45.3 GPa and the temperature of down to 1.8 K,we found no signature of superconductivity in SmSb_(2). 展开更多
关键词 high pressure ANTIFERROMAGNET MAGNETORESISTIVITY structural transition
在线阅读 下载PDF
Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
9
作者 Dong-Sheng Chen Ting-Ting Miao +3 位作者 Cheng Chang Xu-Yang Guo Meng-Yan Guan and Zhong-Li Ji 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期494-504,共11页
The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsid... The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments. 展开更多
关键词 methane hydrate molecular dynamics thermal transport triaxial compression structural stability
在线阅读 下载PDF
Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials
10
作者 Yoon Bo Sim Hami Lee +1 位作者 Junyoung Mun Ki Jae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期185-205,共21页
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C... With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials. 展开更多
关键词 High energy density High-Ni cathode materials Degradation structural stability Lithium-ion battery
在线阅读 下载PDF
Linear magnetoresistance and structural distortion in layered SrCu_(4-x)P_(2) single crystals
11
作者 聂勇 陈正 +10 位作者 韦文森 李慧杰 张勇 梅明 王园园 宋文海 宋东升 王钊胜 朱相德 宁伟 田明亮 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期591-594,共4页
We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magne... We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion. 展开更多
关键词 linear magnetoresistance thermal expansion specific heat structural distortion
在线阅读 下载PDF
Structural engineering of Fe single-atom oxygen reduction catalyst with high site density and improved mass transfer
12
作者 Jiawen Wu Yuanzhi Zhu +3 位作者 An Cai Xiaobin Fan Wenchao Peng Yang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期634-644,共11页
Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges re... Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications. 展开更多
关键词 Single-atom catalysts Oxygen reduction reaction structural engineering Active site density Mass transfer Zinc-air batteries
在线阅读 下载PDF
MXenes for Bioinspired Soft Actuators:Advancements in Angle-Independent Structural Colors and Beyond
13
作者 Siavash Iravani Rajender S.Varma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期18-34,共17页
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural mo... Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics. 展开更多
关键词 MXenes MXene-based composites Bioinspired soft robotics Angle-independent structural color
在线阅读 下载PDF
Structural behavior and metallization of AsSbS_(3) at high pressure
14
作者 Tian Qin Min Wu +2 位作者 Kai Wang Ye Wu Haijun Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期436-440,共5页
The group V–VI semiconductor material getchellite (crystalline AsSbS_(3)) has garnered extensive attention due to itswonderful electronic and optical properties. The pressure engineering is one of the most effective ... The group V–VI semiconductor material getchellite (crystalline AsSbS_(3)) has garnered extensive attention due to itswonderful electronic and optical properties. The pressure engineering is one of the most effective methods to modulatecrystal structure and physical properties of semiconductor materials. In this study, the structural behavior, optical and electricalproperties of AsSbS_(3) under high pressure have been investigated systematically by in situ high-pressure experimentsfor the first time. The monoclinic structure of AsSbS_(3) remains stable up to 47.0 GPa without phase transition. The graduallattice contraction with increasing pressure results in a continuous narrowing of the bandgap then leads to pressure-inducedmetallization of AsSbS_(3) at 31.5 GPa. Our research presents a high-pressure strategy for tuning the crystal structure andphysical properties of AsSbS_(3) to expand its potential applications in electronic and optoelectronic fields. 展开更多
关键词 AsSbS_(3) structural behavior pressure-induced metallization high pressure
在线阅读 下载PDF
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
15
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3D ordered electrode structural features Preparation technology Ultralow Pt loading
在线阅读 下载PDF
Structural characterization and anti-inflammatory activities of novel polysaccharides obtained from Pleurotus eryngii
16
作者 Han Wang Sai Ma +5 位作者 Alfred Mugambi Mariga Qiuhui Hu Qian Xu Anxiang Su Ning Ma Gaoxing Ma 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期3031-3042,共12页
Natural polysaccharides named PEP-0.1-1,PEP-0-1 and PEP-0-2 from edible mushroom species Pleurotus eryngii were obtained in the present study.Results showed that molecular weights of these polysaccharides were 3235,20... Natural polysaccharides named PEP-0.1-1,PEP-0-1 and PEP-0-2 from edible mushroom species Pleurotus eryngii were obtained in the present study.Results showed that molecular weights of these polysaccharides were 3235,2041 and 23933 Da,respectively.Further,structural characterization revealed that PEP-0.1-1 had a→4-α-D-Glcp-1→backbone and contained→4)-α-D-Glcp and→4)-β-D-Glcp reducing end groups.PEP-0-1 backbone contained→4-α-D-Glcp-1→and→6-α-3-O-Me-D-Galp-1→,and the side chains containedα-D-Glcp,β-D-Manp-1→andα-D-Glcp-3→.However,PEP-0-2 backbone consisted of→4-α-DGlcp-1→and→6-α-3-O-Me-D-Galp-(1→6)-α-D-Galp-1→while the side chains containedα-D-Glcp andβ-D-Manp-1→.Biological activity analysis was then carried out and found that all these polysaccharides could significantly suppress the relative mRNA expression of toll-like receptor 4,nitric oxide(NO),tumor necrosis factor-α,interleukin(IL)-1βand IL-6 in lipopolysaccharide(LPS)-induced inflammation of RAW264.7 cells,as well as the over secretion of the above cell cytokines.Moreover,Western blotting analysis revealed that all these purified fractions displayed significant inhibition effects on the expression of c-Jun N-terminal kinases protein induced by LPS in mitogen activated protein kinase pathway,along with the relieving on the inhibition effect of LPS on IκB-αprotein expression.In summary,the information generated by the present study could provide a theoretical basis for the exploration of novel healthy food materials from edible mushroom with antiinflammation activities. 展开更多
关键词 Pleurotus eryngii POLYSACCHARIDES structural characterization Anti-inflammatory activity
在线阅读 下载PDF
Structural characterization of three acidic polysaccharides from Opuntia dillenii Haw.fruits and their protective effect against hydrogen peroxide-induced oxidative stress in Huh-7 cells
17
作者 Rui Liu Fangxin Chu +1 位作者 Zheng Yan Hanqing Chen 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1929-1942,共14页
Three novel acidic polysaccharide fractions(OFPP-1,OFPP-2,OFPP-3)with different m olecular weights(803.7,555.1 and 414.5 k Da)were isolated from the peeled Opuntia dillenii Haw.fruits by alkali-extraction,graded alcoh... Three novel acidic polysaccharide fractions(OFPP-1,OFPP-2,OFPP-3)with different m olecular weights(803.7,555.1 and 414.5 k Da)were isolated from the peeled Opuntia dillenii Haw.fruits by alkali-extraction,graded alcohol precipitation and column chromatography.Structural analysis indicated that OFPPs were pectic polysaccharides consisting of rhamnose,arabinose and galactose residues.The backbone of OFPP-1 consisted of a repeating unit→6-α-D-Galp A-(1→2)-α-L-Rhap-(1→with T-α-D-Galp A-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→,T-β-D-Xylp-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→or T-α-D-Galp A-(1→3)-α-L-Araf-(1→as the side chains.The backbone of OFPP-2 consisted of a disaccharide repeating unit→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→with T-β-L-Araf-(1→as the branches substituted at the O-4 position of→2,4)-α-LRhap-(1→.Whereas the backbone of OFPP-3 was→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-β-L-Araf-(1→or→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→,which was branched at the O-4 position of→2,4)-α-L-Rhap-(1→.Moreover,these three polysaccharide fractions could protect Huh-7 cells against H2O2-induced oxidative stress to different extents by decreasing the MDA content and increasing the SOD,CAT,GSH-Px activities and the GSH level in the Huh-7 cells.These results suggest that OFPPs have the potential to be used as natural antioxidants. 展开更多
关键词 Opuntia dillenii Haw.fruits POLYSACCHARIDE Alkali extraction structural characterization Oxidative stress
在线阅读 下载PDF
Regulating Anderson localization with structural defect disorder
18
作者 Mouyang Cheng Haoxiang Chen Ji Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期102-107,共6页
Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the sam... Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the same time,namely,the original Anderson’s disorder and the structural defect disorder,which has been suggested to be a key component in recently discovered two-dimensional amorphous materials.While increasing the degree of both disorders could induce localization of wavefunction in real space,we find that a small degree of structural defect disorder can significantly enhance the localization.As the degree of structural defect disorder increases,localized states quickly appear within the extended phase to enter a broad crossover region with mixed phases.We establish two-dimensional diagrams for the wavefunction localization and conductivity to highlight the interplay between the two types of disorders.Our theoretical model provides a comprehensive understanding of localization in two-dimensional amorphous materials and highlights the promising tunability of their transport properties. 展开更多
关键词 Anderson localization structural defect disorder electronic transport properties
在线阅读 下载PDF
Assessment of electrostatic discharge sensitivity of nitrogen-rich heterocyclic energetic compounds and their salts as high energy-density dangerous compounds:A study of structural variables
19
作者 Mohammad Hossein Keshavarz Sedigheh Heydari Bani +1 位作者 Reza Bakhtiari Seyyed Hesamodin Hosseini 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期15-22,共8页
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous... Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement. 展开更多
关键词 Electrostatic discharge sensitivity Heterocyclic energetic compounds containing azole compound Interpretable structural parameter Safety
在线阅读 下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
20
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
在线阅读 下载PDF
上一页 1 2 174 下一页 到第
使用帮助 返回顶部