期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives
1
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery state-of-health estimation DATA-DRIVEN Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
A Novel Real-Time State-of-Health and State-of-Charge Co-Estimation Method for LiFePO_4 Battery 被引量:1
2
作者 乔荣学 张明建 +3 位作者 刘屹东 任文举 林原 潘锋 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期182-185,共4页
The state of charge (SOC) and state of health (SOH) are two of the most important parameters of Li-ion batteries in industrial production and in practical applications. The real-time estimation for these two param... The state of charge (SOC) and state of health (SOH) are two of the most important parameters of Li-ion batteries in industrial production and in practical applications. The real-time estimation for these two parameters is crucial to realize a safe and reliable battery application. However, this is a great problem for LiFePO4 batteries due to the large constant potential plateau in the charge/discharge process. Here we propose a combined SOC and SOH co-estimation method based on the experimental test under the simulating electric vehicle working condition. A first-order resistance-capacitance equivalent circuit is used to model the battery cell, and three parameter values, ohmic resistance (Rs), parallel resistance (Rp) and parallel capacity (Cp), are identified from a real-time experimental test. Finally we find that Rp and Cp could be utilized to make a judgement on the SOIl. More importantly, the linear relationship between Cp and the SOC is established to make the estimation of the SOC for the first time. 展开更多
关键词 of in is on SOC A Novel Real-Time state-of-health and State-of-Charge Co-Estimation Method for LiFePO4 Battery SOH for
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部