期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进SNN的列车轮对踏面缺陷识别方法
1
作者 何静 黄聪聪 +1 位作者 张昌凡 贾林 《铁道学报》 北大核心 2025年第1期91-100,共10页
列车轮对踏面缺陷识别是保障列车轮轨系统安全服役的关键步骤。然而,轮对踏面缺陷类型多样复杂、类别不平衡,现有卷积神经网络算法难以对其进行准确识别。为此,提出基于改进脉冲神经网络(SNN)的列车轮对不平衡踏面缺陷识别方法。采用混... 列车轮对踏面缺陷识别是保障列车轮轨系统安全服役的关键步骤。然而,轮对踏面缺陷类型多样复杂、类别不平衡,现有卷积神经网络算法难以对其进行准确识别。为此,提出基于改进脉冲神经网络(SNN)的列车轮对不平衡踏面缺陷识别方法。采用混合卷积编码模块,通过提高特征多样性稀疏表达,减少编码细节信息丢失;提出脉冲金字塔拆分注意网络,考虑多尺度空间信息跨通道交互能力,以提取缺陷的多尺度特征;提出一种新的交叉注意力模块,提取不同层级特征的空间全局信息,通过交叉校准以增强输入特征,抑制噪声等无用特征;通过不平衡比例达10∶1的踏面缺陷数据集对该识别方法进行试验验证。验证结果表明,该方法能够有效提高模型的识别精度,并且对少数类别缺陷也有较高的识别率。 展开更多
关键词 轮对踏面 缺陷识别 脉冲神经网络 特征融合 注意力机制
在线阅读 下载PDF
Photonic integrated neuro-synaptic core for convolutional spiking neural network 被引量:3
2
作者 Shuiying Xiang Yuechun Shi +14 位作者 Yahui Zhang Xingxing Guo Ling Zheng Yanan Han Yuna Zhang Ziwei Song Dianzhuang Zheng Tao Zhang Hailing Wang Xiaojun Zhu Xiangfei Chen Min Qiu Yichen Shen Wanhua Zheng Yue Hao 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第11期29-42,共14页
Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions... Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network(PSNN).However,they are separately implemented with different photonic materials and devices,hindering the large-scale integration of PSNN.Here,we propose,fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback(DFB)laser with a saturable absorber(DFB-SA).A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation.Furthermore,a fourchannel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network,achieving a recognition accuracy of 87%for the MNIST dataset.The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip. 展开更多
关键词 neuromorphic computation photonic spiking neuron photonic integrated DFB-SA array convolutional spiking neural network
在线阅读 下载PDF
Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip 被引量:2
3
作者 Yanan Han Shuiying Xiang +6 位作者 Ziwei Song Shuang Gao Xingxing Guo Yahui Zhang Yuechun Shi Xiangfei Chen Yue Hao 《Opto-Electronic Science》 2023年第9期1-10,共10页
Spiking neural networks(SNNs)utilize brain-like spatiotemporal spike encoding for simulating brain functions.Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuro... Spiking neural networks(SNNs)utilize brain-like spatiotemporal spike encoding for simulating brain functions.Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuromorphic computing.Here,we proposed a multi-synaptic photonic SNN,combining the modified remote supervised learning with delayweight co-training to achieve pattern classification.The impact of multi-synaptic connections and the robustness of the network were investigated through numerical simulations.In addition,the collaborative computing of algorithm and hardware was demonstrated based on a fabricated integrated distributed feedback laser with a saturable absorber(DFB-SA),where 10 different noisy digital patterns were successfully classified.A functional photonic SNN that far exceeds the scale limit of hardware integration was achieved based on time-division multiplexing,demonstrating the capability of hardware-algorithm co-computation. 展开更多
关键词 photonic spiking neural network fabricated DFB-SA laser chip multi-synaptic connection optical computing
在线阅读 下载PDF
Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
4
作者 Wenwu Jiang Jie Li +4 位作者 Hongbo Liu Xicong Qian Yuan Ge Lidan Wang Shukai Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期225-233,共9页
Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,... Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network. 展开更多
关键词 MEMRISTOR multi-synaptic circuit spiking neuron spiking neural network(snn)
在线阅读 下载PDF
A progressive surrogate gradient learning for memristive spiking neural network
5
作者 王姝 陈涛 +4 位作者 龚钰 孙帆 申思远 段书凯 王丽丹 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期689-697,共9页
In recent years, spiking neural networks(SNNs) have received increasing attention of research in the field of artificial intelligence due to their high biological plausibility, low energy consumption, and abundant spa... In recent years, spiking neural networks(SNNs) have received increasing attention of research in the field of artificial intelligence due to their high biological plausibility, low energy consumption, and abundant spatio-temporal information.However, the non-differential spike activity makes SNNs more difficult to train in supervised training. Most existing methods focusing on introducing an approximated derivative to replace it, while they are often based on static surrogate functions. In this paper, we propose a progressive surrogate gradient learning for backpropagation of SNNs, which is able to approximate the step function gradually and to reduce information loss. Furthermore, memristor cross arrays are used for speeding up calculation and reducing system energy consumption for their hardware advantage. The proposed algorithm is evaluated on both static and neuromorphic datasets using fully connected and convolutional network architecture, and the experimental results indicate that our approach has a high performance compared with previous research. 展开更多
关键词 spiking neural network surrogate gradient supervised learning memristor cross array
在线阅读 下载PDF
多脉冲发放的Spiking神经网络 被引量:3
6
作者 方慧娟 王永骥 《应用科学学报》 CAS CSCD 北大核心 2008年第6期638-644,共7页
针对允许神经元发放多个脉冲的Spiking神经网络(SNN)的学习,提出采用更接近生物神经元的SRM模型,更全面地考虑了神经元在发放脉冲后的状态变化,并采用BP学习算法调整神经元的不应期.通过对XOR问题、IRIS数据集以及泊松脉冲序列的测试,... 针对允许神经元发放多个脉冲的Spiking神经网络(SNN)的学习,提出采用更接近生物神经元的SRM模型,更全面地考虑了神经元在发放脉冲后的状态变化,并采用BP学习算法调整神经元的不应期.通过对XOR问题、IRIS数据集以及泊松脉冲序列的测试,表明这种多脉冲发放的SNN比单脉冲发放的SNN能够更有效地传递信息,提高学习速度. 展开更多
关键词 spiking神经网络 多脉冲 SRM模型 不应期
在线阅读 下载PDF
脉冲神经网络基准测试及类脑训练框架性能评估
7
作者 胡汪鑫 成英超 +2 位作者 何玉林 黄哲学 蔡占川 《应用科学学报》 北大核心 2025年第1期169-182,共14页
随着脉冲神经网络(spiking neural network,SNN)研究需求的不断增长,开源类脑训练框架也迅速发展。然而,目前缺乏针对这些框架的系统性选择指南。为了解决该问题,提出了一种基于图像分类任务的SNN基准测试方法。本文为两种SNN训练方法,... 随着脉冲神经网络(spiking neural network,SNN)研究需求的不断增长,开源类脑训练框架也迅速发展。然而,目前缺乏针对这些框架的系统性选择指南。为了解决该问题,提出了一种基于图像分类任务的SNN基准测试方法。本文为两种SNN训练方法,即直接替代梯度反向传播训练方法以及从人工神经网络(artificial neural network,ANN)到SNN的转换训练方法分别设计了卷积神经网络和全连接深度神经网络模型,并使用MNIST、FashionMNIST和CIFAR-10基准图像数据集,以训练时间和分类准确率为评估指标,比较了不同类脑训练框架的性能差异。研究结果表明,在SNN直接训练中,类脑训练框架SpikingJelly在训练时间和分类准确率方面均表现优异;而在ANN到SNN的转换训练中,Lava框架实现了最高的分类准确率。 展开更多
关键词 深度学习 脉冲神经网络 类脑训练框架 基准测试 图像分类
在线阅读 下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
8
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 Artificial intelligence Emerging devices Artificial sensory neurons spiking neural networks Neuromorphic sensing
在线阅读 下载PDF
基于深度复数脉冲神经网络的特定辐射源识别
9
作者 张乃煜 张雅彬 查浩然 《信息对抗技术》 2025年第1期52-60,共9页
特定辐射源识别在民用频谱管理中起着重要作用。传统的深度神经网络方法在辐射源识别方面面临诸多挑战,包括训练时间长、能耗高以及计算稀疏性低。针对这些问题,设计了一种基于深度复数脉冲神经网络模型,该模型集成了脉冲神经层,并利用... 特定辐射源识别在民用频谱管理中起着重要作用。传统的深度神经网络方法在辐射源识别方面面临诸多挑战,包括训练时间长、能耗高以及计算稀疏性低。针对这些问题,设计了一种基于深度复数脉冲神经网络模型,该模型集成了脉冲神经层,并利用复数数据的固有特性增强信号表达能力,显著优化了计算效率并降低了硬件资源需求。测试结果表明,该模型的识别准确率达到了96%,单条数据的平均推理时间为0.19 ms,在模型参数规模、推理速度和推理数据能量消耗上均优于传统神经网络模型。 展开更多
关键词 特定辐射源识别 脉冲神经网络 复数神经网络 Wi-Fi信号
在线阅读 下载PDF
基于突触可塑性的SNN随钻陀螺仪漂移处理
10
作者 杨金显 韩玉鑫 刘鹏威 《电子科技》 2022年第4期60-66,共7页
针对随钻振动引起MEMS陀螺仪的数据漂移问题,文中提出了一种脉冲神经网络算法。首先根据陀螺仪漂移误差的时间特性,利用脉冲网络的脉冲时间编码陀螺仪的信息强度。然后利用Izhikevich神经元模型的突触可塑性,调节激发性突触电导并抑制... 针对随钻振动引起MEMS陀螺仪的数据漂移问题,文中提出了一种脉冲神经网络算法。首先根据陀螺仪漂移误差的时间特性,利用脉冲网络的脉冲时间编码陀螺仪的信息强度。然后利用Izhikevich神经元模型的突触可塑性,调节激发性突触电导并抑制性突触电导,增强网络的鲁棒性,从而提高陀螺仪信号对噪声的抗干扰能力。在不同振动频率下,分析高斯白噪声输出神经元的点火率和膜电位间的相关性。实验结果表明,在不同频率的强振动下,噪声对输出神经元点火率及输出层神经元点火率相对变化的影响较小,对输出层神经元膜电位的影响较小,但是对膜电位间相关性的影响较大。该结果证明了文中所提方法提高了陀螺仪在振动噪声下的抗干扰能力,为陀螺仪漂移处理提供了新的思路。 展开更多
关键词 随钻振动 数据漂移 脉冲神经网络 突触可塑性 突触电导 点火率 膜电位相关性 抗干扰
在线阅读 下载PDF
基于Spiking的RBF神经网络故障诊断算法 被引量:2
11
作者 霍一峰 王亚慧 《北京建筑工程学院学报》 2011年第4期57-61,共5页
神经网络是一种不依赖模型的控制方法,其自身并不需要给定预先需要的有关先验知识和判断函数,因此能对变化的环境(包括扰动和噪声信号等等)具有良好的自适应性.RBF神经网络是具有单隐层的三层前馈网络,由输入到输出的映射是非线性的,而... 神经网络是一种不依赖模型的控制方法,其自身并不需要给定预先需要的有关先验知识和判断函数,因此能对变化的环境(包括扰动和噪声信号等等)具有良好的自适应性.RBF神经网络是具有单隐层的三层前馈网络,由输入到输出的映射是非线性的,而隐含层空间到输出空间的映射是线性的.其优点在于收敛速度快,具有唯一最佳逼近的特性,且不会陷入局部最小的问题.Spiking神经网络采用时间编码的方式来进行数据处理,更接近于实际生物神经系统.基于Spiking的RBF神经网络在预测精度和误差控制上有着显著的效果. 展开更多
关键词 RBF神经网络 spiking 故障诊断
在线阅读 下载PDF
基于不同神经网络模型预测体测成绩
12
作者 刘建伟 董征宇 《信息技术》 2024年第1期65-70,76,共7页
为更加准确地反应当前学生的身体素质情况,基于多个不同的神经网络模型构建体测成绩预测模型,为降低体测成绩中各项目数据之间的相关性,使用主成分分析法对数据集进行处理。使用BP神经网络结合脉冲神经网络构建一个预测模型,加强模型处... 为更加准确地反应当前学生的身体素质情况,基于多个不同的神经网络模型构建体测成绩预测模型,为降低体测成绩中各项目数据之间的相关性,使用主成分分析法对数据集进行处理。使用BP神经网络结合脉冲神经网络构建一个预测模型,加强模型处理分析数据集的能力,提高预测的准确性。在长短期记忆神经网络中加入注意力机制构建另一个预测模型,使模型更加关注数据集中的关键信息。通过实验,预测模型输出的预测值与实际值的重合率高达90%以上,预测准确率整体在95%以上。 展开更多
关键词 体测成绩分析 神经网络模型 主成分分析 BP神经网络 脉冲神经网络
在线阅读 下载PDF
基于脉冲序列标识的深度脉冲神经网络时空反向传播算法 被引量:1
13
作者 王子华 叶莹 +3 位作者 刘洪运 许燕 樊瑜波 王卫东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2596-2604,共9页
尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深... 尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深度脉冲神经网络训练的基于时间脉冲序列标识的监督学习算法,通过定义突触后电位和膜电位反传迭代因子分别分析脉冲神经元的空间和时间依赖关系,使用替代梯度的方法解决反传过程中不连续可微的问题。不同于现有基于尖峰放电速率标识的学习算法,该算法能够充分反映脉冲神经网络输出的时间脉冲序列的动态特性。因此,所提算法非常适合应用于需要较长时间序列标识的计算任务,例如行为的时间脉冲序列控制。该文在静态图像数据集CIFAR10和神经形态数据集NMNIST上验证了所提算法的有效性,在所有这些数据集上都显示出良好的性能,这有助于进一步研究基于时间脉冲序列应用的大脑启发计算。 展开更多
关键词 脉冲神经网络 监督学习 误差反向传播 时间脉冲序列标识 替代梯度
在线阅读 下载PDF
基于脉冲神经网络的轻量化SAR图像舰船识别算法
14
作者 谢洪途 陈佳兴 +1 位作者 张琳 朱楠楠 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期474-482,共9页
针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景... 针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景噪声干扰.然后,结合泄漏整合发射(LIF)脉冲神经元和卷积神经网络,构建融合时序信息的SNN模型,能实现SAR图像舰船识别.最后,采用反正切函数作为反向传播时脉冲发射函数的梯度替代函数对SNN模型进行优化,能解决模型难以训练的问题.实验结果表明所提算法具有高精度、少参数、高效率和低能耗等优势,能实现SAR图像高效准确舰船识别. 展开更多
关键词 合成孔径雷达图像 舰船识别 脉冲神经网络 轻量化
在线阅读 下载PDF
未知复杂环境下基于兴趣驱动的类脑自主导航技术 被引量:1
15
作者 王晨旭 熊智 杨闯 《航空科学技术》 2024年第2期1-13,共13页
随着无人系统的应用越发广泛,传统导航技术很难满足无人系统在面对复杂任务和未知环境时对自主智能导航性能的要求。哺乳动物能够在兴趣驱动下实现高效智能且自适应环境的导航行为,受此启发的基于兴趣驱动的类脑自主导航技术有潜力克服... 随着无人系统的应用越发广泛,传统导航技术很难满足无人系统在面对复杂任务和未知环境时对自主智能导航性能的要求。哺乳动物能够在兴趣驱动下实现高效智能且自适应环境的导航行为,受此启发的基于兴趣驱动的类脑自主导航技术有潜力克服传统导航实时、准确和低功耗不能同时满足的缺点。本文首先阐述了哺乳动物大脑导航机理;其次,总结概括出基于兴趣驱动的类脑自主导航技术框架;再次,从自身感知、环境认知、记忆推理和兴趣决策4个方面梳理了类脑自主导航的关键技术和实现途径,指出了相关研究的缺陷;最后,分析了现阶段类脑自主导航技术的不足,并对未来一体化发展做出展望。 展开更多
关键词 类脑自主导航 兴趣驱动 连续吸引子神经网络 类脑多源融合 脉冲神经网络 类脑芯片
在线阅读 下载PDF
空间点目标神经形态学探测方法
16
作者 王瑞琳 王立 +1 位作者 贺盈波 李林 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第3期98-110,共13页
随着在轨航天器面临越来越多的威胁,如何识别并评估这些威胁对航天器正常运行的影响已成为一个迫切需要解决的问题。目前,空间目标的探测和跟踪主要依赖于传统的基于帧的视觉传感器,但这类传感器在实时性和数据量等方面存在不足。与此同... 随着在轨航天器面临越来越多的威胁,如何识别并评估这些威胁对航天器正常运行的影响已成为一个迫切需要解决的问题。目前,空间目标的探测和跟踪主要依赖于传统的基于帧的视觉传感器,但这类传感器在实时性和数据量等方面存在不足。与此同时,基于神经形态学的视觉传感器已在运动目标检测和跟踪领域获得广泛应用。由于其获取的事件流数据仅包含视场中变化部分的信息,且具有微秒级的时间分辨率,这使得目标检测和跟踪的速度能够达到微秒级,同时大幅降低了需要处理的数据量。正因为神经形态学视觉传感器的这些优势,它在空间应用领域已成为当前的研究焦点。基于此,提出了一种基于三层脉冲神经网络的空间点目标检测方法——空间点目标神经形态学探测方法,仅使用事件流数据实现对空间点目标的探测和跟踪。主要包括局部运动感知层/全局运动感知层以及输出层,采用分数阶漏积分点火神经元作为基础处理单元,并利用其自适应性抑制事件流数据中的热噪声。通过实际采集的空间点目标事件流数据和公开数据集中的事件流数据进行了验证。在实际采集的空间点目标事件流数据上,去噪滤波部分的事件去噪精度和事件信噪比分别能够达到0.414和-3.036,跟踪部分的总跟踪时长、总跟踪错误次数以及平均跟踪偏差分别达到了9.395 s、100以及0.3797。试验结果表明,空间点目标神经形态学探测方法能够从复杂的事件流数据中检测出快速运动的单个或者多个空间目标,并且能够对检测出的空间点目标进行持续的跟踪。 展开更多
关键词 空间点目标 神经形态学 事件流数据 目标探测 脉冲神经网络
在线阅读 下载PDF
Advances in neuromorphic computing:Expanding horizons for AI development through novel artificial neurons and in-sensor computing
17
作者 杨玉波 赵吉哲 +11 位作者 刘胤洁 华夏扬 王天睿 郑纪元 郝智彪 熊兵 孙长征 韩彦军 王健 李洪涛 汪莱 罗毅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期1-23,共23页
AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by ... AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI. 展开更多
关键词 neuromorphic computing spiking neural network(snn) in-sensor computing artificial intelligence
在线阅读 下载PDF
基于坐标注意力脉冲神经网络的注视估计方法
18
作者 王红霞 赵志国 《计量学报》 CSCD 北大核心 2024年第7期982-988,共7页
针对传统相机在拍摄人眼运动时易产生动态模糊、时间分辨率低等问题,采用事件相机近眼拍摄构建Spiking-Eye数据集,并提出一种坐标注意力的脉冲神经网络模型(CA-SpikingRepVGG)。模型读取编码后的事件数据,经过带坐标注意力的主干网络进... 针对传统相机在拍摄人眼运动时易产生动态模糊、时间分辨率低等问题,采用事件相机近眼拍摄构建Spiking-Eye数据集,并提出一种坐标注意力的脉冲神经网络模型(CA-SpikingRepVGG)。模型读取编码后的事件数据,经过带坐标注意力的主干网络进行特征提取,最后馈入检测头进行检测。实验结果显示:CA-SpikingRepVGG的平均检测精确率R_(P)达到了70.8%,与SpikingVGG-16比较,该模型的R_(P)提高了15.9%,召回率R_(r)提高了14.2%;仅需SpikingDensenet模型1/3的训练时间,比其R_(P)提高1.8%、R_(r)提高0.9%。结果表明:该模型在针对眼球运动这一场景下对人眼的检测追踪能力更强,可以很好地完成注视估计任务。 展开更多
关键词 机器视觉 目标检测 脉冲神经网络 注视估计 坐标注意力 召回率 事件相机
在线阅读 下载PDF
基于脉冲神经网络的指挥智能体技术
19
作者 王栋 赵彦东 陈希飞 《火力与指挥控制》 CSCD 北大核心 2024年第5期36-43,51,共9页
针对现有智能体技术应用于军事指挥控制领域中时存在计算资源需求高、奖励值稀疏、收敛速度慢、推理效果差的问题,提出了一种基于脉冲神经网络(spiking neural network,SNN)和分层强化学习的指挥智能体技术。基于分层强化学习思想对军... 针对现有智能体技术应用于军事指挥控制领域中时存在计算资源需求高、奖励值稀疏、收敛速度慢、推理效果差的问题,提出了一种基于脉冲神经网络(spiking neural network,SNN)和分层强化学习的指挥智能体技术。基于分层强化学习思想对军事指挥智能体进行建模,利用SNN构建智能体决策模型;通过ANN-SNN转换的学习算法获得基于SNN的指挥智能体;基于“墨子”兵棋推演软件开展对比试验,与现有智能体技术相比,提出方法对计算资源的需求较低,且具有较高的博弈对抗胜率。 展开更多
关键词 脉冲神经网络 分层强化学习 指挥智能体 ANN-snn
在线阅读 下载PDF
矿用5G通信信号传输的干扰监测技术
20
作者 张立亚 马征 +1 位作者 郝博南 李标 《工矿自动化》 CSCD 北大核心 2024年第11期62-69,共8页
相比现有的干扰抑制技术(自适应滤技术、自适应干扰对消技术),盲源分离技术能够分离混合在一起的多个信号,计算复杂度低,鲁棒性强。但盲源分离技术难以全面覆盖井下复杂多变的干扰源,同时缺乏对处理后信号成分的自动分析与评估机制,不... 相比现有的干扰抑制技术(自适应滤技术、自适应干扰对消技术),盲源分离技术能够分离混合在一起的多个信号,计算复杂度低,鲁棒性强。但盲源分离技术难以全面覆盖井下复杂多变的干扰源,同时缺乏对处理后信号成分的自动分析与评估机制,不仅限制了通信效率的提升,还可能因干扰残留而引发安全隐患。针对上述问题,提出了一种基于神经网络的矿用5G通信信号传输干扰监测抑制方法。通过分析井下主运输大巷、综采工作面和变电所等区域的干扰源特点,指出毛刺干扰及串扰信号的抑制和处理是5G抗干扰问题的关键。采用盲源分离技术初步分离矿用5G通信信号中的干扰成分,利用神经网络对分离后的信号进行特征提取及深度分析,精准识别并量化其中残留的干扰信号,一旦监测到干扰信号超出预设阈值,将自动触发新一轮的干扰抑制流程,形成迭代优化的闭环控制。实验结果表明:①在100 MHz全带宽发送的环境中,使用矿用5G通信信号干扰监测抑制方法能够对毛刺干扰与串扰信号实现13 dB的干扰抑制增益,比使用盲源分离干扰抑制方法效果提升约117%及86%。②矿用5G通信信号干扰监测抑制方法较盲源分离等传统干扰抑制技术,信噪比平均提升了15.56%,误码率平均降低了21.88%,能够显著提升信号质量。 展开更多
关键词 矿用5G 矿用通信 干扰抑制 干扰监测 盲源分离 神经网络 毛刺干扰 串扰信号 TRANSFORMER
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部