Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribu...Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.展开更多
This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V...This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance.展开更多
The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage...The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.展开更多
Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configurati...Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configuration designs,ensuring precision,and facilitating scalability for mass production.Photolithography stands out as an ideal technology,leveraging its unparalleled resolution,exceptional design flexibility,and entrenched position within the mature semiconductor industry.However,comprehensive reviews on its application in MB development remain scarce.This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs.Firstly,we delve into the fundamental principles and step-by-step procedures of photolithography,offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection.Subsequently,we highlighted the specific roles of photolithography in the fabrication of MBs,including its utilization as a template for creating miniaturized micropatterns,a protective layer during the etching process,a mold for soft lithography,a constituent of MB active component,and a sacrificial layer in the construction of micro-Swiss-roll structure.Finally,the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography,providing comprehensive insights and sparking research inspiration in this field.展开更多
Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and the...Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency.展开更多
This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Compar...This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu.展开更多
Energy harvesting storage hybrid devices have garnered considerable attention as self-rechargeable power sources for wireless and ubiquitous electronics.Triboelectric nanogenerators(TENGs),a common type of energy harv...Energy harvesting storage hybrid devices have garnered considerable attention as self-rechargeable power sources for wireless and ubiquitous electronics.Triboelectric nanogenerators(TENGs),a common type of energy harvester,generate alternating current-based,irregular short pulses,posing a challenge for storing the generated electrical energy in energy storage systems that typically operate with direct current(DC)-based low-frequency response.In this study,we propose a new strategy that leverages high-frequency response to develop efficient chargeable TENG-supercapacitor(SC)hybrid devices.A highfrequency SC was fabricated using hollow-structured MXene electrode materials,resulting in a twofold increase in the charging efficiency of the hybrid device compared to a control SC made with conventional carbon electrode materials.For a systematic understanding,the electrochemical interplay between the TENGs and SCs was investigated as a function of the frequency characteristics of SCs(f_(SC))and the output pulse duration of TENGs(Δt_(TENG)).Increasing the fSC·Δt_(TENG) enhanced the charging efficiency of the TENG-SC hybrid devices.This study highlights the importance of frequency response design in developing efficient chargeable TENG-SC hybrid devices.展开更多
High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluct...High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems.展开更多
Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the futur...Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the future development of PIBs.Bismuth-based anode materials demonstrate great potential for storing potassium ions(K^(+))due to their layered structure,high theoretical capacity based on the alloying reaction mechanism,and safe operating voltage.However,the large radius of K^(+)inevitably induces severe volume expansion in depotassiation/potassiation,and the sluggish kinetics of K^(+)insertion/extraction limits its further development.Herein,we summarize the strategies used to improve the potassium storage properties of various types of materials and introduce recent advances in the design and fabrication of favorable structural features of bismuth-based materials.Firstly,this review analyzes the structure,working mechanism and advantages and disadvantages of various types of materials for potassium storage.Then,based on this,the manuscript focuses on summarizing modification strategies including structural and morphological design,compositing with other materials,and electrolyte optimization,and elucidating the advantages of various modifications in enhancing the potassium storage performance.Finally,we outline the current challenges of bismuth-based materials in PIBs and put forward some prospects to be verified.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
Most research on carbon storage in forests has focused on qualitative studies of carbon storage and influ-encing factors rather than on quantifying the effect of the spatial distribution of carbon storage and of its i...Most research on carbon storage in forests has focused on qualitative studies of carbon storage and influ-encing factors rather than on quantifying the effect of the spatial distribution of carbon storage and of its influencing factors at different scales.Here we described the spatial dis-tribution of aboveground carbon storage(ACS)in a 20-ha plot in a subtropical evergreen broad-leaved forest to evalu-ate and quantify the relative effects of biotic factors(species diversity and structural diversity)and abiotic factors(soil and topographic factors)on ACS at different scales.Scale effects of the spatial distribution of ACS were significant,with higher variability at smaller scales,but less at larger scales.The distribution was also spatially heterogeneous,with more carbon storage on north-and east-facing slopes than on south-and west-facing slopes.At a smaller scale,species diversity and structural diversity each had a direct positive impact on ACS,but soil factors had no significant direct impact.At increasing scales,topographic and soil fac-tors gradually had a greater direct influence,whereas the influence of species diversity gradually decreased.Structural diversity had the greatest impact,followed by topographic factors and soil factors,while species diversity had a rela-tively smaller impact.These findings suggest studies on ACS in subtropical evergreen broadleaf forests in southern China should consider scale effects,specifically on the heterogene-ity of ACS distribution at small scales.Studies and conser-vation efforts need to focus on smaller habitat types with particular emphasis on habitat factors such as aspect and soil conditions,which have significant influences on community species diversity,structural diversity,and ACS distribution.展开更多
Antiferromagnetic(AFM) spintronics have sparked extensive research interest in the field of information storage due to the considerable advantages offered by antiferromagnets, including non-volatile data storage, high...Antiferromagnetic(AFM) spintronics have sparked extensive research interest in the field of information storage due to the considerable advantages offered by antiferromagnets, including non-volatile data storage, higher storage density, and accelerating data processing. However, the manipulation and detection of internal AFM order in antiferromagnets hinders their applications in spintronic devices. Here, we proposed a design idea for an AFM material that is self-assembled from one-dimensional(1D) ferromagnetic(FM) chains. To validate this idea, we screened a two-dimensional(2D) selfassembled CrBr_(2) antiferromagnet of an AFM semiconductor from a large amount of data. This 2D CrBr_(2) antiferromagnet is composed of 1D FM CrBr_(2) chains that are arranged in a staggered and parallel configuration. In this type of antiferromagnet, the write-data operation of information is achieved in 1D FM chains, followed by a self-assembly process driving the assembly of 1D FM chains into an antiferromagnet. These constituent 1D FM chains become decoupled by external perturbations, such as heat, pressure, strain, etc., thereby realizing the read-data operation of information. We anticipate that this antiferromagnet, composed of 1D FM chains, can be realized not only in the 1D to 2D system, but also is expected to expand to 2D to three-dimensional(3D) system, and even 1D to 3D system.展开更多
The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth unders...The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions.In-situ transmission electron microscopy(TEM)is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments.These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries.This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems,including atomic-scale structural imaging,strain field imaging,electron holography,and integrated differential phase contrast imaging.Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution,ionic valence state changes,and strain mapping,ion transport dynamics.The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems.展开更多
Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during defo...Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices.展开更多
Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials...Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs.展开更多
Chemical hydrogen storage in organic materials is a promising method thanks to its high storage density,reversibility,and safety.However,the dehydrogenation process of organic materials requires high temperatures due ...Chemical hydrogen storage in organic materials is a promising method thanks to its high storage density,reversibility,and safety.However,the dehydrogenation process of organic materials requires high temperatures due to their unfavorable thermodynamic properties.This study proposes a strategy to design a new type of hydrogen storage materials,i.e.,alkali metal pyridinolate/piperidinolate pairs,by combining the effects of a heteroatom and an alkali metal in one molecule to achieve suitable dehydrogenation thermodynamics along with high hydrogen storage capacities.These air-stable compounds can be synthesized using low-cost reactants and water as a green solvent.Thermodynamic predictions indicate that enthalpy changes of dehydrogenation(ΔH_(d))can be significantly reduced to the optimal range for efficient hydrogen release,exemplified by lithium 2-piperidinolate with a 5.6 wt%hydrogen capacity and a suitableΔH_(d)of 32.2 kJ/mol-H_(2).Experimental results obtained using sodium systems validate the computational predictions,demonstrating reversible hydrogen storage even below 100℃.The superior hydrogen desorption performance of alkali metal piperidinolates could be attributed to their suitableΔH_(d)induced by the combined effect of ring nitrogen and metal substitution on their structures.This study not only reports new low-cost hydrogen storage materials but also provides a rational design strategy for developing metalorganic compounds possessing high hydrogen capacities and suitable thermodynamics for efficient hydrogen storage.展开更多
In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy sto...In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy storage,multi-band electromagnetic interference(EMI)shielding,and structural design into bio-based materials.Specifically,conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide(TEMPO)-oxidized cellulose fiber skeleton,where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites(specific surface area of 105.6 m2 g-1).Benefiting from the special hierarchical porous structure of the material,the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm^(-2)at 5 m A cm^(-2)and areal energy density of 3.99 m Wh cm^(-2)(2005 m W cm^(-2))with an excellent stability of maintaining 90.23%after 10,000 cycles at 50 m A cm^(-2).Meanwhile,the composites showed a high electrical conductivity of 877.19 S m-1 and excellent EMI efficiency(>99.99%)in multiple wavelength bands.The composite material’s EMI values exceed 100 d B across the L,S,C,and X bands,effectively shielding electromagnetic waves in daily life.The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding,contributing to a more sustainable future.展开更多
The pursuit of sustainable energy has driven a significant interest in hydrogen(H_(2))as a clean fuel alternative.A critical challenge is the efficient storage of H_(2),which this study addresses by examining the pote...The pursuit of sustainable energy has driven a significant interest in hydrogen(H_(2))as a clean fuel alternative.A critical challenge is the efficient storage of H_(2),which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal-organic frameworks(MMOFs with the first“M”representing metal species).Using density functional theory,we optimized the structures of MMOFs and calculated H_(2)adsorption energies above the open metal sites,identifying ScMOF,TiMOF,NiMOF,and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics(AIMD)simulations.Force field parameters were fitted via the Morse potential,providing a solid foundation for subsequent grand canonical Monte Carlo simulations.These simulations revealed that the maximum of saturated excess gravimetric H_(2)uptake exceeds 14.16 wt%at 77 K,surpassing other reported MOFs,whether they possess open metal sites or not.At 298 K and 100 bar,both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H_(2)uptake within the range of 3.05 wt%to 3.94 wt%,once again outperforming other MOFs.Furthermore,lithium(Li)doping significantly enhanced the excess H_(2)uptake,with Li-TiMOF achieving an impressive 6.83 wt%at 298 K and 100 bar,exceeding the ultimate target set by the U.S.Department of Energy.The exceptional H_(2)adsorption capacities of these monolayer MOFs highlight their potential in H_(2)storage,contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward.展开更多
Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments...Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments,and high-temperature,high-pressure online nuclear magnetic resonance(NMR)displacement experiments,are conducted to reveal the oil/gas mass transfer pattern and oil production mechanisms during CO_(2) flooding in ultra-low permeability reservoirs.The impacts of CO_(2) storage pore range and miscibility on oil production and CO_(2) storage characteristics during CO_(2) flooding are clarified.The CO_(2) flooding process is divided into three stages:oil displacement stage by CO_(2),CO_(2) breakthrough stage,CO_(2) extraction stage.Crude oil expansion and viscosity reduction are the main mechanisms for improving recovery in the CO_(2) displacement stage.After CO_(2) breakthrough,the extraction of light components from the crude oil further enhances oil recovery.During CO_(2) flooding,the contribution of crude oil in large pores to the enhanced recovery exceeds 46%,while crude oil in medium pores serves as a reserve for incremental recovery.After CO_(2) breakthrough,a small portion of the crude oil is extracted and carried into nano-scale pores by CO_(2),becoming residual oil that is hard to recover.As the miscibility increases,the CO_(2) front moves more stably and sweeps a larger area,leading to increased CO_(2) storage range and volume.The CO_(2) full-storage stage contributes the most to the overall CO_(2) storage volume.In the CO_(2) escape stage,the storage mechanism involves partial in-situ storage of crude oil within the initial pore range and the CO_(2) carrying crude oil into smaller pores to increase the volume of stored CO_(2).In the CO_(2) leakage stage,as crude oil is produced,a significant amount of CO_(2) leaks out,causing a sharp decline in the storage efficiency.展开更多
Magnesium-based materials are considered as among the most promising candidates for hydrogen storage,owing to their high storage capacity,safety,and reliability.However,a passivation layer easily forms on the surface ...Magnesium-based materials are considered as among the most promising candidates for hydrogen storage,owing to their high storage capacity,safety,and reliability.However,a passivation layer easily forms on the surface of magnesium,which hinders the dissociation and diffusion of hydrogen.High dehydrogenation temperature,sluggish kinetics and activation difficulties hinder their commercial application.Herein,dual-strategy regulation through nickel microalloying and surface catalysis of TiO_(2/)MnO_(2)catalysts has been proposed to obtain more active sites and diffusion channels that promote hydrogen dissociation and transport.Mg8Ni-X(X=None,TiO_(2),and TiO_(2/)MnO_(2))can achieve more than 80%hydrogen absorption without activation.Mg8Ni-5 wt%TiO_(2)/MnO_(2)absorbs hydrogen 5.27 wt%in 30 s at 200℃and desorbs 5.15 wt%in 20 min at 325℃.The activation energy(E_(a))of hydrogen absorption is 52.04kJ/mol.These results are significantly better than those of Mg8Ni and MgH_(2)under the same conditions.The NiTi phase is generated in the course of hydrogenation,and the coexistence of multiple phases and multivalent Ti facilitates the transport of electrons and H.The dual-strategy regulation means of surface catalysis and microalloying is promising for the design of high-capacity fast hydrogen absorbed and desorbed materials without activation.展开更多
基金supported in part by the National Nat-ural Science Foundation of China(52177110)Key Pro-gram of the National Natural Science Foundation of China(U22B20106,U2142206)+2 种基金Shenzhen Science and Technology Program(JCYJ20210324131409026)the Science and Technology Project of the State Grid Corpo-ration of China(5200-202319382A-2-3-XG)State Grid Zhejiang Elctric Power Co.,Ltd.Science and Tech-nology Project(B311DS24001A).
文摘Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0909060001)the National Natural Science Foundation of China(No.52271213)。
文摘This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance.
基金funded by Humanities and Social Sciences of Ministry of Education Planning Fund of China(21YJA790009)National Natural Science Foundation of China(72140001).
文摘The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.
基金supported by the National Natural Science Foundation of China(22125903,22439003,22209175)the National Key R&D Program of China(Grant 2022YFA1504100,2023YFB4005204)+1 种基金the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(Grant E412010508)the State Key Laboratory of Catalysis(No:2024SKL-A-001)。
文摘Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configuration designs,ensuring precision,and facilitating scalability for mass production.Photolithography stands out as an ideal technology,leveraging its unparalleled resolution,exceptional design flexibility,and entrenched position within the mature semiconductor industry.However,comprehensive reviews on its application in MB development remain scarce.This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs.Firstly,we delve into the fundamental principles and step-by-step procedures of photolithography,offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection.Subsequently,we highlighted the specific roles of photolithography in the fabrication of MBs,including its utilization as a template for creating miniaturized micropatterns,a protective layer during the etching process,a mold for soft lithography,a constituent of MB active component,and a sacrificial layer in the construction of micro-Swiss-roll structure.Finally,the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography,providing comprehensive insights and sparking research inspiration in this field.
基金support from the National Natural Science Foundation of China(Grant No.62105148)China Postdoctoral Science Foundation(2022TQ0148 and 2023M731651)Postgraduate Research&Practice Innovation Program of NUAA(xcxjh20230609).
文摘Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency.
基金supported by the Innovation Talents Project of Harbin Science and Technology Bureau(2022CXRCCGO11)。
文摘This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu.
基金supported by the Basic Science Research Program(RS-2024-00344021 and RS-2023-00261543)through the National Research Foundation of Korea(NRF)grant by the Korean Government(MSIT)the National Research Council of Science&Technology(NST)grant by the Korea Government(MSIT)(GTL24011-000)Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(RS-2024-00420590,HRD Program for Industrial Innovation).
文摘Energy harvesting storage hybrid devices have garnered considerable attention as self-rechargeable power sources for wireless and ubiquitous electronics.Triboelectric nanogenerators(TENGs),a common type of energy harvester,generate alternating current-based,irregular short pulses,posing a challenge for storing the generated electrical energy in energy storage systems that typically operate with direct current(DC)-based low-frequency response.In this study,we propose a new strategy that leverages high-frequency response to develop efficient chargeable TENG-supercapacitor(SC)hybrid devices.A highfrequency SC was fabricated using hollow-structured MXene electrode materials,resulting in a twofold increase in the charging efficiency of the hybrid device compared to a control SC made with conventional carbon electrode materials.For a systematic understanding,the electrochemical interplay between the TENGs and SCs was investigated as a function of the frequency characteristics of SCs(f_(SC))and the output pulse duration of TENGs(Δt_(TENG)).Increasing the fSC·Δt_(TENG) enhanced the charging efficiency of the TENG-SC hybrid devices.This study highlights the importance of frequency response design in developing efficient chargeable TENG-SC hybrid devices.
基金supported by the National Natural Science Foundation of China(Grant No.51976092)。
文摘High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems.
基金supported by the National Natural Science Foundation of China(22209057)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J0839).
文摘Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the future development of PIBs.Bismuth-based anode materials demonstrate great potential for storing potassium ions(K^(+))due to their layered structure,high theoretical capacity based on the alloying reaction mechanism,and safe operating voltage.However,the large radius of K^(+)inevitably induces severe volume expansion in depotassiation/potassiation,and the sluggish kinetics of K^(+)insertion/extraction limits its further development.Herein,we summarize the strategies used to improve the potassium storage properties of various types of materials and introduce recent advances in the design and fabrication of favorable structural features of bismuth-based materials.Firstly,this review analyzes the structure,working mechanism and advantages and disadvantages of various types of materials for potassium storage.Then,based on this,the manuscript focuses on summarizing modification strategies including structural and morphological design,compositing with other materials,and electrolyte optimization,and elucidating the advantages of various modifications in enhancing the potassium storage performance.Finally,we outline the current challenges of bismuth-based materials in PIBs and put forward some prospects to be verified.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金supported by the Guangxi Natural Science Foundation Program(2022GXNSFAA035583,2021GXNSFBA196052)the National Natural Science Foundation of China(32060305,32460270).
文摘Most research on carbon storage in forests has focused on qualitative studies of carbon storage and influ-encing factors rather than on quantifying the effect of the spatial distribution of carbon storage and of its influencing factors at different scales.Here we described the spatial dis-tribution of aboveground carbon storage(ACS)in a 20-ha plot in a subtropical evergreen broad-leaved forest to evalu-ate and quantify the relative effects of biotic factors(species diversity and structural diversity)and abiotic factors(soil and topographic factors)on ACS at different scales.Scale effects of the spatial distribution of ACS were significant,with higher variability at smaller scales,but less at larger scales.The distribution was also spatially heterogeneous,with more carbon storage on north-and east-facing slopes than on south-and west-facing slopes.At a smaller scale,species diversity and structural diversity each had a direct positive impact on ACS,but soil factors had no significant direct impact.At increasing scales,topographic and soil fac-tors gradually had a greater direct influence,whereas the influence of species diversity gradually decreased.Structural diversity had the greatest impact,followed by topographic factors and soil factors,while species diversity had a rela-tively smaller impact.These findings suggest studies on ACS in subtropical evergreen broadleaf forests in southern China should consider scale effects,specifically on the heterogene-ity of ACS distribution at small scales.Studies and conser-vation efforts need to focus on smaller habitat types with particular emphasis on habitat factors such as aspect and soil conditions,which have significant influences on community species diversity,structural diversity,and ACS distribution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12435001, 12304006, and 12404265)the Natural Science Foundation of Shanghai, China (Grant No. 23JC1401400)+1 种基金the Fundamental Research Funds for the Central Universities of East China University, the Natural Science Foundation of WIUCAS (Grant No. WIUCASQD2023004)the Natural Science Foundation of Wenzhou (Grant No. L2023005)。
文摘Antiferromagnetic(AFM) spintronics have sparked extensive research interest in the field of information storage due to the considerable advantages offered by antiferromagnets, including non-volatile data storage, higher storage density, and accelerating data processing. However, the manipulation and detection of internal AFM order in antiferromagnets hinders their applications in spintronic devices. Here, we proposed a design idea for an AFM material that is self-assembled from one-dimensional(1D) ferromagnetic(FM) chains. To validate this idea, we screened a two-dimensional(2D) selfassembled CrBr_(2) antiferromagnet of an AFM semiconductor from a large amount of data. This 2D CrBr_(2) antiferromagnet is composed of 1D FM CrBr_(2) chains that are arranged in a staggered and parallel configuration. In this type of antiferromagnet, the write-data operation of information is achieved in 1D FM chains, followed by a self-assembly process driving the assembly of 1D FM chains into an antiferromagnet. These constituent 1D FM chains become decoupled by external perturbations, such as heat, pressure, strain, etc., thereby realizing the read-data operation of information. We anticipate that this antiferromagnet, composed of 1D FM chains, can be realized not only in the 1D to 2D system, but also is expected to expand to 2D to three-dimensional(3D) system, and even 1D to 3D system.
基金supported by the National Key Research Program of China under Grant No.2024YFA1408000the National Natural Science Foundation of China(52231007,12327804,T2321003,22088101)+1 种基金in part by the National Key Research Program of China under Grant 2021YFA1200600the support from the U.S.National Science Foundation(CHE 2102482)。
文摘The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions.In-situ transmission electron microscopy(TEM)is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments.These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries.This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems,including atomic-scale structural imaging,strain field imaging,electron holography,and integrated differential phase contrast imaging.Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution,ionic valence state changes,and strain mapping,ion transport dynamics.The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems.
基金supported by Korea Institute of Science and Technology(KIST)Institutional Program and Open Research Program(ORP)This work was also supported by grant from the National Research Foundation(NRF)of Korea government(RS-2024-00433159 and RS-2023-00208313)from ITECH R&D program of MOTIE/KEIT(RS-2023-00257573).
文摘Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices.
基金financially supported by the National Natural Science Foundation of China(No.51902025).
文摘Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs.
基金partially supported by the National Key R&D Program of China(2023YFE0198900)support provided by the National Natural Science Foundation of China(52171226,22309174)。
文摘Chemical hydrogen storage in organic materials is a promising method thanks to its high storage density,reversibility,and safety.However,the dehydrogenation process of organic materials requires high temperatures due to their unfavorable thermodynamic properties.This study proposes a strategy to design a new type of hydrogen storage materials,i.e.,alkali metal pyridinolate/piperidinolate pairs,by combining the effects of a heteroatom and an alkali metal in one molecule to achieve suitable dehydrogenation thermodynamics along with high hydrogen storage capacities.These air-stable compounds can be synthesized using low-cost reactants and water as a green solvent.Thermodynamic predictions indicate that enthalpy changes of dehydrogenation(ΔH_(d))can be significantly reduced to the optimal range for efficient hydrogen release,exemplified by lithium 2-piperidinolate with a 5.6 wt%hydrogen capacity and a suitableΔH_(d)of 32.2 kJ/mol-H_(2).Experimental results obtained using sodium systems validate the computational predictions,demonstrating reversible hydrogen storage even below 100℃.The superior hydrogen desorption performance of alkali metal piperidinolates could be attributed to their suitableΔH_(d)induced by the combined effect of ring nitrogen and metal substitution on their structures.This study not only reports new low-cost hydrogen storage materials but also provides a rational design strategy for developing metalorganic compounds possessing high hydrogen capacities and suitable thermodynamics for efficient hydrogen storage.
基金the financial support of a special fund from the Beijing Key Laboratory of Lignocellulosic Chemistry,College of Materials Science and Technology,Beijing Forestry UniversityFinancial support from NSERC Discovery grant(RGPIN-2017-06737)+1 种基金Canada Research Chair program is also acknowledgedthe China Scholarship Council(CSC)for its financial support(CSC No.202306510047)。
文摘In an era where technological advancement and sustainability converge,developing renewable materials with multifunctional integration is increasingly in demand.This study filled a crucial gap by integrating energy storage,multi-band electromagnetic interference(EMI)shielding,and structural design into bio-based materials.Specifically,conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide(TEMPO)-oxidized cellulose fiber skeleton,where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites(specific surface area of 105.6 m2 g-1).Benefiting from the special hierarchical porous structure of the material,the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm^(-2)at 5 m A cm^(-2)and areal energy density of 3.99 m Wh cm^(-2)(2005 m W cm^(-2))with an excellent stability of maintaining 90.23%after 10,000 cycles at 50 m A cm^(-2).Meanwhile,the composites showed a high electrical conductivity of 877.19 S m-1 and excellent EMI efficiency(>99.99%)in multiple wavelength bands.The composite material’s EMI values exceed 100 d B across the L,S,C,and X bands,effectively shielding electromagnetic waves in daily life.The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding,contributing to a more sustainable future.
基金supported by National Natural Science Foundation of China(Grant No.12104237)Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY219031).
文摘The pursuit of sustainable energy has driven a significant interest in hydrogen(H_(2))as a clean fuel alternative.A critical challenge is the efficient storage of H_(2),which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal-organic frameworks(MMOFs with the first“M”representing metal species).Using density functional theory,we optimized the structures of MMOFs and calculated H_(2)adsorption energies above the open metal sites,identifying ScMOF,TiMOF,NiMOF,and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics(AIMD)simulations.Force field parameters were fitted via the Morse potential,providing a solid foundation for subsequent grand canonical Monte Carlo simulations.These simulations revealed that the maximum of saturated excess gravimetric H_(2)uptake exceeds 14.16 wt%at 77 K,surpassing other reported MOFs,whether they possess open metal sites or not.At 298 K and 100 bar,both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H_(2)uptake within the range of 3.05 wt%to 3.94 wt%,once again outperforming other MOFs.Furthermore,lithium(Li)doping significantly enhanced the excess H_(2)uptake,with Li-TiMOF achieving an impressive 6.83 wt%at 298 K and 100 bar,exceeding the ultimate target set by the U.S.Department of Energy.The exceptional H_(2)adsorption capacities of these monolayer MOFs highlight their potential in H_(2)storage,contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward.
基金Supported by the National Natural Science Foundation of China(52274053)Natural Science Foundation of Beijing(3232028).
文摘Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments,and high-temperature,high-pressure online nuclear magnetic resonance(NMR)displacement experiments,are conducted to reveal the oil/gas mass transfer pattern and oil production mechanisms during CO_(2) flooding in ultra-low permeability reservoirs.The impacts of CO_(2) storage pore range and miscibility on oil production and CO_(2) storage characteristics during CO_(2) flooding are clarified.The CO_(2) flooding process is divided into three stages:oil displacement stage by CO_(2),CO_(2) breakthrough stage,CO_(2) extraction stage.Crude oil expansion and viscosity reduction are the main mechanisms for improving recovery in the CO_(2) displacement stage.After CO_(2) breakthrough,the extraction of light components from the crude oil further enhances oil recovery.During CO_(2) flooding,the contribution of crude oil in large pores to the enhanced recovery exceeds 46%,while crude oil in medium pores serves as a reserve for incremental recovery.After CO_(2) breakthrough,a small portion of the crude oil is extracted and carried into nano-scale pores by CO_(2),becoming residual oil that is hard to recover.As the miscibility increases,the CO_(2) front moves more stably and sweeps a larger area,leading to increased CO_(2) storage range and volume.The CO_(2) full-storage stage contributes the most to the overall CO_(2) storage volume.In the CO_(2) escape stage,the storage mechanism involves partial in-situ storage of crude oil within the initial pore range and the CO_(2) carrying crude oil into smaller pores to increase the volume of stored CO_(2).In the CO_(2) leakage stage,as crude oil is produced,a significant amount of CO_(2) leaks out,causing a sharp decline in the storage efficiency.
基金financially supported by the Yulin Science and Technology Bureau(Grant No.2023-CXY-202)Scientific Research Program Funded by Shaanxi Provincial Education Department(Grant No.23JP008)+1 种基金Key Research and Development Projects of Shaanxi Province(Grant No.2024GX-YBXM-213)National Natural Science Foundation of China(Grant No.52102109)。
文摘Magnesium-based materials are considered as among the most promising candidates for hydrogen storage,owing to their high storage capacity,safety,and reliability.However,a passivation layer easily forms on the surface of magnesium,which hinders the dissociation and diffusion of hydrogen.High dehydrogenation temperature,sluggish kinetics and activation difficulties hinder their commercial application.Herein,dual-strategy regulation through nickel microalloying and surface catalysis of TiO_(2/)MnO_(2)catalysts has been proposed to obtain more active sites and diffusion channels that promote hydrogen dissociation and transport.Mg8Ni-X(X=None,TiO_(2),and TiO_(2/)MnO_(2))can achieve more than 80%hydrogen absorption without activation.Mg8Ni-5 wt%TiO_(2)/MnO_(2)absorbs hydrogen 5.27 wt%in 30 s at 200℃and desorbs 5.15 wt%in 20 min at 325℃.The activation energy(E_(a))of hydrogen absorption is 52.04kJ/mol.These results are significantly better than those of Mg8Ni and MgH_(2)under the same conditions.The NiTi phase is generated in the course of hydrogenation,and the coexistence of multiple phases and multivalent Ti facilitates the transport of electrons and H.The dual-strategy regulation means of surface catalysis and microalloying is promising for the design of high-capacity fast hydrogen absorbed and desorbed materials without activation.