期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Feature extraction for target identification and image classification of OMIS hyperspectral image 被引量:7
1
作者 DU Pei-jun TAN Kun SU Hong-jun 《Mining Science and Technology》 EI CAS 2009年第6期835-841,共7页
In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree alg... In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree algorithm,spectral absorption index (SAI),continuum-removal and derivative spectral analysis were employed to discover characterized spectral features of different targets,and decision trees for identifying a specific class and discriminating different classes were generated. By combining support vector machine (SVM) classifier with different feature extraction strategies including principal component analysis (PCA),minimum noise fraction (MNF),grouping PCA,and derivate spectral analysis,the performance of feature extraction approaches in classification was evaluated. The results show that feature extraction by PCA and derivate spectral analysis are effective to OMIS (operational modular imaging spectrometer) image classification using SVM,and SVM outperforms traditional SAM and MLC classifiers for OMIS data. 展开更多
关键词 hyperspectral remote sensing feature extraction decision tree SVM OMIS
在线阅读 下载PDF
A novel feature extraction method for ship-radiated noise 被引量:4
2
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise Ship-radiated noise feature extraction Classification and recognition
在线阅读 下载PDF
A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy 被引量:3
3
作者 Yu-xing Li Shang-bin Jiao Xiang Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1625-1635,共11页
Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of ... Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields.Reverse dispersion entropy(RDE)proposed by us recently,as a nonlinear dynamic analysis method,has the advantages of fast computing speed and strong anti-noise ability,which is more suitable for measuring the complexity of signal than traditional permutation entropy(PE)and dispersion entropy(DE).Empirical wavelet transform(EWT),based on the theory of wavelet analysis,can decompose a complex non-stationary signal into a number of empirical wavelet functions(EWFs)with compact support set spectrum,which has better decomposition performance than empirical mode decomposition(EMD)and its improved algorithms.Considering the advantages of RDE and EWT,on the one hand,we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy;on the other hand,we use RDE as the features of EWFs to improve the signal separability and stability.Finally,we propose a novel signal feature extraction technology based on EWT and RDE in this paper.Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals.Moreover,it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies. 展开更多
关键词 feature extraction Empirical mode decomposition Empirical wavelet transform Permutation entropy Reverse dispersion entropy
在线阅读 下载PDF
Chromatic processing for feature extraction of PD-induced UHF signals in GIS 被引量:4
4
作者 Xi Li Zhixiang Wang +2 位作者 Xiaohua Wang Mingzhe Rong Di Liu 《Global Energy Interconnection》 2020年第5期494-503,共10页
Partial discharge(PD) detection is an effective means of discovering insulation faults in gas-insulated switchgear(GIS). One of the most extensively used methods in PD detection has historically been the ultrahigh fre... Partial discharge(PD) detection is an effective means of discovering insulation faults in gas-insulated switchgear(GIS). One of the most extensively used methods in PD detection has historically been the ultrahigh frequency(UHF) method. This study evaluates the chromatic processing methodology and its key factors for feature extraction of UHF signals in GIS. Three types of artificial defects are installed in the GIS tank at 0°, 90°, and 180°, respectively. The features of the UHF signals are extracted in the chromatic space, and PD discrimination of the defects is achieved. The influences of processors are studied before the feature selections are suggested. The time-stepping method is proposed to determine the rules of UHF signal frequency characteristics that vary with time. Finally, the process and options of the chromatics-inspired methodology are summarized. 展开更多
关键词 Partial discharge Ultra-high frequency CHROMATIC feature extraction
在线阅读 下载PDF
A novel approach for feature extraction from a gamma‑ray energy spectrum based on image descriptor transferring for radionuclide identification 被引量:1
5
作者 Hao‑Lin Liu Hai‑Bo Ji +3 位作者 Jiang‑Mei Zhang Cao‑Lin Zhang Jing Lu Xing‑Hua Feng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第12期88-104,共17页
This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identification of the gamma-ray energy spectrum set.For easier utilization of the information contai... This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identification of the gamma-ray energy spectrum set.For easier utilization of the information contained in the spectra,the vectors of the gamma-ray energy spectra from Euclidean space,which are fingerprints of the different types of radionuclides,were mapped to matrices in the Banach space.Subsequently,to make the spectra in matrix form easier to apply to image-based deep learning frameworks,the matrices of the gamma-ray energy spectra were mapped to images in the RGB color space.A deep convolutional neural network(DCNN)model was constructed and trained on the ImageNet dataset.The mapped gamma-ray energy spectrum images were applied as inputs to the DCNN model,and the corresponding outputs of the convolution layers and fully connected layers were transferred as descriptors of the images to construct a new classification model for radionuclide identification.The transferred image descriptors consist of global and local features,where the activation vectors of fully connected layers are global features,and activations from convolution layers are local features.A series of comparative experiments between the transferred image descriptors,peak information,features extracted by the histogram of the oriented gradients(HOG),and scale-invariant feature transform(SIFT)using both synthetic and measured data were applied to 11 classical classifiers.The results demonstrate that although the gamma-ray energy spectrum images are completely unfamiliar to the DCNN model and have not been used in the pre-training process,the transferred image descriptors achieved good classification results.The global features have strong semantic information,which achieves an average accuracy of 92.76%and 94.86%on the synthetic dataset and measured dataset,respectively.The results of the statistical comparison of features demonstrate that the proposed approach outperforms the peak-searching-based method,HOG,and SIFT on the synthetic and measured datasets. 展开更多
关键词 Radionuclide identification feature extraction Transfer learning Gamma energy spectrum analysis Image descriptor
在线阅读 下载PDF
Feature Extraction Approach for Defect Inspection in Eddy Current Pulsed Thermography 被引量:1
6
作者 Pei-Pei Zhu Li-Bing Bai Yu-Hua Cheng 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期390-400,共11页
The eddy current pulsed thermography(ECPT)technique is a research focus in the non-destructive testing(NDT)area for defect inspection.Defect feature extraction for defect information analysis in ECPT is limited by ima... The eddy current pulsed thermography(ECPT)technique is a research focus in the non-destructive testing(NDT)area for defect inspection.Defect feature extraction for defect information analysis in ECPT is limited by image contrast,heat diffusion,background interference,etc.In this paper,a defect feature extraction approach in ECPT has been proposed to improve the quality of defect features,which is based on image partition,local sparse component evaluation,and feature fusion.This method can extract complete defect features by enhancing the defect area and removing background interference,such as noises and heating coil.Two typical steel specimens are utilized to testify the validity of the proposed approach.Compared with other three common feature extraction algorithms in ECPT,the proposed method can reserve more complete defect features and suppress more background interference. 展开更多
关键词 Eddy current thermography feature extraction machine learning non-destructive testing(NDT).
在线阅读 下载PDF
A Feature Extraction Method for scRNA-seq Processing and Its Application on COVID-19 Data Analysis 被引量:1
7
作者 Xiumin Shi Xiyuan Wu Hengyu Qin 《Journal of Beijing Institute of Technology》 EI CAS 2022年第3期285-292,共8页
Single-cell RNA-sequencing(scRNA-seq)is a rapidly increasing research area in biomed-ical signal processing.However,the high complexity of single-cell data makes efficient and accurate analysis difficult.To improve th... Single-cell RNA-sequencing(scRNA-seq)is a rapidly increasing research area in biomed-ical signal processing.However,the high complexity of single-cell data makes efficient and accurate analysis difficult.To improve the performance of single-cell RNA data processing,two single-cell features calculation method and corresponding dual-input neural network structures are proposed.In this feature extraction and fusion scheme,the features at the cluster level are extracted by hier-archical clustering and differential gene analysis,and the features at the cell level are extracted by the calculation of gene frequency and cross cell frequency.Our experiments on COVID-19 data demonstrate that the combined use of these two feature achieves great results and high robustness for classification tasks. 展开更多
关键词 biomedical signal processing scRNA-seq feature extraction COVID-19
在线阅读 下载PDF
Deep Learning-Based Semantic Feature Extraction:A Literature Review and Future Directions 被引量:1
8
作者 DENG Letian ZHAO Yanru 《ZTE Communications》 2023年第2期11-17,共7页
Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications ... Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence. 展开更多
关键词 semantic feature extraction semantic communication deep learning
在线阅读 下载PDF
Feature Extraction of Defects on Wood Surface
9
作者 王克奇 白景峰 +2 位作者 莫虹 孔详林 崔克冰 《Journal of Forestry Research》 SCIE CAS CSCD 1998年第1期54-56,共3页
The computer image processing technology was used to accomplish the feature extraction of defect images on wood surface. By calculation of gray values of defects. three feature data which are useful to identify the de... The computer image processing technology was used to accomplish the feature extraction of defect images on wood surface. By calculation of gray values of defects. three feature data which are useful to identify the defects have been achieved. The experiment indicates that this way is effective to the automation recognition of the defects on wood surface. 展开更多
关键词 Binarilization Gray image feature extraction
在线阅读 下载PDF
Active Shape Model of Combining Pca and Ica: Application to Facial Feature Extraction
10
作者 邓琳 饶妮妮 王刚 《Journal of Electronic Science and Technology of China》 2006年第2期114-117,共4页
Active Shape Model (ASM) is a powerful statistical tool to extract the facial features of a face image under frontal view. It mainly relies on Principle Component Analysis (PCA) to statistically model the variabil... Active Shape Model (ASM) is a powerful statistical tool to extract the facial features of a face image under frontal view. It mainly relies on Principle Component Analysis (PCA) to statistically model the variability in the training set of example shapes. Independent Component Analysis (ICA) has been proven to be more efficient to extract face features than PCA. In this paper, we combine the PCA and ICA by the consecutive strategy to form a novel ASM. Firstly, an initial model, which shows the global shape variability in the training set, is generated by the PCA-based ASM. And then, the final shape model, which contains more local characters, is established by the ICA-based ASM. Experimental results verify that the accuracy of facial feature extraction is statistically significantly improved by applying the ICA modes after the PCA modes. 展开更多
关键词 facial feature extraction Active Shape Model (ASM) Principle ComponentAnalysis (PCA) Independent Component Analysis (ICA)
在线阅读 下载PDF
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather
11
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image Image feature point extraction and matching Space weather Solar image
在线阅读 下载PDF
ESPRIT-Based Feature Extraction of Helicopter Acoustic Signal
12
作者 周忠来 栗苹 +1 位作者 郑链 施聚生 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期8-14,共7页
Aim To extract harmonic frequencies of helicopter acoustic signal as features for hel icopter identification. Methods Estimation of signal parameters via rotational invariance techniques(ESPRIT) was selected to ext... Aim To extract harmonic frequencies of helicopter acoustic signal as features for hel icopter identification. Methods Estimation of signal parameters via rotational invariance techniques(ESPRIT) was selected to extract harmonic frequencies from really measured helicopter acoustic signal and an algorithm based on the SVD TLS was used. Results ESPRIT correctly extracted harmonic frequencies of helicopter using the data of limited length under the variousflight conditions. Conclusion ESPRIT is an effective method of extracting harmonic frequencies and using harmonic frequencies of helicopter acoustic signal to recognize helicopter is feasible. 展开更多
关键词 HELICOPTER acoustic signal harmonic frequencies ESPRIT feature extraction
在线阅读 下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
13
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 Artificial intelligence Radiomics feature extraction feature selection Modeling INTERPRETABILITY Multimodalities Head and neck cancer
在线阅读 下载PDF
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
14
作者 Siwei Li Liang Yue +1 位作者 Xiangyu Kong Chengshan Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期313-323,共11页
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide... This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective. 展开更多
关键词 Load aggregation Regional large-scale Online recognition feature extraction method
在线阅读 下载PDF
MOVING OBJECT TRACKING IN DYNAMIC IMAGE SEQUENCE BASED ON ESTIMATION OF MOTION VECTORS OF FEATURE POINTS 被引量:2
15
作者 黎宁 周建江 张星星 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期295-300,共6页
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor... An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence. 展开更多
关键词 motion compensation motion estimation feature extraction moving object tracking dynamic image sequence
在线阅读 下载PDF
Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM 被引量:9
16
作者 YANG Hua-chao ZHANG Shu-bi DENG Ka-zhong DU Pei-jun 《Journal of China University of Mining and Technology》 EI 2007年第4期473-478,共6页
Classification and recognition of hyperspectral remote sensing images is not the same as that of conventional multi-spectral remote sensing images. We propose,a novel feature selection and classification method for hy... Classification and recognition of hyperspectral remote sensing images is not the same as that of conventional multi-spectral remote sensing images. We propose,a novel feature selection and classification method for hyperspectral images by combining the global optimization ability of particle swarm optimization (PSO) algorithm and the superior classification performance of a support vector machine (SVM). Global optimal search performance of PSO is improved by using a chaotic optimization search technique. Granularity based grid search strategy is used to optimize the SVM model parameters. Parameter optimization and classification of the SVM are addressed using the training date corre-sponding to the feature subset. A false classification rate is adopted as a fitness function. Tests of feature selection and classification are carried out on a hyperspectral data set. Classification performances are also compared among different feature extraction methods commonly used today. Results indicate that this hybrid method has a higher classification accuracy and can effectively extract optimal bands. A feasible approach is provided for feature selection and classifica-tion of hyperspectral image data. 展开更多
关键词 hyperspectral remote sensing particle swarm optimization support vector machine feature extraction
在线阅读 下载PDF
Video Concept Detection Based on Multiple Features and Classifiers Fusion 被引量:1
17
作者 Dong Yuan Zhang Jiwei +2 位作者 Zhao Nan Chang Xiaofu Liu Wei 《China Communications》 SCIE CSCD 2012年第8期105-121,共17页
The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ... The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts. 展开更多
关键词 concept detection visual feature extraction kemel-based learning classifier fusion
在线阅读 下载PDF
Retrieval of High Resolution Satellite Images Using Texture Features 被引量:1
18
作者 Samia Bouteldja Assia Kourgli 《Journal of Electronic Science and Technology》 CAS 2014年第2期211-215,共5页
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ... In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. 展开更多
关键词 Content-based image retrieval high resolution satellite imagery local binary pattern texture feature extraction
在线阅读 下载PDF
Method for Detecting Weld Feature Size Based on Line Structured Light 被引量:6
19
作者 ZHU Huayu LU Yonghua +2 位作者 LI Yanlong TAN Jie FENG Qiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期383-392,共10页
With the rapid development of the machining and manufacturing industry,welding has been widely used in forming connections of structural parts.At present,manual methods are often used for welding and quality inspectio... With the rapid development of the machining and manufacturing industry,welding has been widely used in forming connections of structural parts.At present,manual methods are often used for welding and quality inspection,with low efficiency and unstable product quality.Due to the requirements of visual inspection of weld feature size,a visual inspection system for weld feature size based on line structured light(LSL)is designed and built in this paper.An adaptive light stripe sub-pixel center extraction algorithm and a feature point extraction algorithm for welding light stripe are proposed.The experiment results show that the detection error of the weld width is 0.216 mm,the detection error of the remaining height is 0.035 mm,the single measurement costs 109 ms,and the inspection stability and repeatability of the system is 1%.Our approach can meet the online detection requirements of practical applications. 展开更多
关键词 optical inspection WELD feature size light stripe center extraction feature point extraction
在线阅读 下载PDF
Research on Visual Detection Algorithm for Groove Feature Sizes by Means of Structured Light Projection 被引量:1
20
作者 ZHA Anfei LU Yonghua +1 位作者 WANG Mingxin ZHU Huayu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第3期367-378,共12页
The visual inspection is an economical and effective method for welding. For measuring the feature sizes of grooves,a method based on line structured light is presented. Firstly,an adaptive algorithm to extract the su... The visual inspection is an economical and effective method for welding. For measuring the feature sizes of grooves,a method based on line structured light is presented. Firstly,an adaptive algorithm to extract the subpixel centerline of structured light stripes is introduced to deal with the uneven width and grayscale distributions of laser stripes,which is based on the quadratic weighted grayscale centroid. By means of region-of-interest(ROI)division and image difference,an image preprocessing algorithm is developed for filtering noise and improving image quality. Furthermore,to acquire geometrical dimensions of various grooves and groove types precisely,the subpixel feature point extraction algorithm of grooves is designed. Finally, experimental results of feature size measuring show that the absolute error of measurement is 0.031—0.176 mm,and the relative error of measurement is 0.2%—3.6%. 展开更多
关键词 groove measurement line structured light centerline extraction feature point extraction
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部