由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标...由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标方位估计问题转化为矩阵流形上两点间的几何距离问题,揭示了方位估计与黎曼空间矩阵流形的映射规律,从而得到了几何距离最小值处对应的角度即为目标入射角度的结论,并通过构建两个强鲁棒性的矩阵流形,完成了矩阵信息几何DOA估计理论模型的建立。通过模拟仿真与实测数据对所新方法进行了验证。验证结果表明:与现有的最小方差无失真响应算法和多信号分类算法相比,新方法在低信噪比环境下拥有更好的估计精度;新方法的应用具有一定的实际意义和应用前景,可以为海洋防御及民用领域中的水下目标方位估计等提供坚实的技术支持。展开更多
文摘由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标方位估计问题转化为矩阵流形上两点间的几何距离问题,揭示了方位估计与黎曼空间矩阵流形的映射规律,从而得到了几何距离最小值处对应的角度即为目标入射角度的结论,并通过构建两个强鲁棒性的矩阵流形,完成了矩阵信息几何DOA估计理论模型的建立。通过模拟仿真与实测数据对所新方法进行了验证。验证结果表明:与现有的最小方差无失真响应算法和多信号分类算法相比,新方法在低信噪比环境下拥有更好的估计精度;新方法的应用具有一定的实际意义和应用前景,可以为海洋防御及民用领域中的水下目标方位估计等提供坚实的技术支持。