期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Rationally designing electrolyte additives for highly improving cyclability of LiNi_(0.5)Mn_(1.5)O_(4)/Graphite cells 被引量:2
1
作者 Zhiyong Xia Kuan Zhou +8 位作者 Xiaoyan Lin Zhangyating Xie Qiurong Chen Xiaoqing Li Jie Cai Suli Li Hai Wang Mengqing Xu Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期266-275,共10页
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo... High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries. 展开更多
关键词 Electrolyte additive Design and synthesis cyclability High voltage batteries Cathode and anode interphases
在线阅读 下载PDF
KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor 被引量:5
2
作者 ChaitraK Vinny R T +6 位作者 Sivaraman P Narendra Reddy Chunyan Hu Krishna Venkatesh Vivek C S Nagaraju N Kathyayini N 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期56-62,共7页
Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like ... Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like porous carbon (K-PC) derived from banana fibers as negative electrode. Initially, the electrochemical performance of hydrothermally synthesized ss-Ni(OH)(2)/MWCNTs nanocomposite and K-PC was studied in a three-electrode system using 1 M KOH. These materials exhibited a specific capacitance (Cs) of 1327 Fig and 324 F/g respectively at a scan rate of 10 mV/s. Further, the AS device i.e., ss-Ni(OH)(2)/MWCNTs// K-PC in 1 M KOH solution, demonstrated a Cs of 156 F/g at scan rate of 10 mV/s in a broad cell voltage of 0-2.2 V. The device demonstrated a good rate capability by maintaining a Cs of 59 F/g even at high current density (25 A/g). The device also offered high energy density of 63 Wh/kg with maximum power density of 5.2 kW/kg. The AS device exhibited excellent cycle life with 100% capacitance retention at 5000th cycle at a high current density of 25 A/g. Two AS devices connected in series were employed for powering a pair of LEDs of different colors and also a mini fan. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Asymmetric supercapacitor device Activated porous carbon High energy density cyclability Power source
在线阅读 下载PDF
Achieving high-capacity and long-life K^(+)storage enabled by constructing yolk-shell Sb_(2)S_(3)@N,S-doped carbon nanorod anodes 被引量:5
3
作者 Bensheng Xiao Hehe Zhang +9 位作者 Zhefei Sun Miao Li Yingzhu Fan Haichen Lin Haodong Liu Bing Jiang Yanbin Shen Ming-Sheng Wang Meicheng Li Qiaobao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期547-556,I0014,共11页
As promising anode candidates for potassium-ion batteries(PIBs),antimony sulfide(Sb_(2)S_(3))possesses high specific capacity but suffers from massive volume expansion and sluggish kinetics due to the large K^(+)inser... As promising anode candidates for potassium-ion batteries(PIBs),antimony sulfide(Sb_(2)S_(3))possesses high specific capacity but suffers from massive volume expansion and sluggish kinetics due to the large K^(+)insertion,resulting in inferior cycling and rate performance.To address these challenges,a yolk-shell structured Sb_(2)S_(3)confined in N,S co-doped hollow carbon nanorod(YS-Sb_(2)S_(3)@NSC)working as a viable anode for PIBs is proposed.As directly verified by in situ transmission electron microscopy(TEM),the buffer space between the Sb_(2)S_(3)core and thin carbon shell can effectively accommodate the large expansion stress of Sb_(2)S_(3)without cracking the shell and the carbon shell can accelerate electron transport and K^(+)diffusion,which plays a significant role in reinforcing the structural stability and facilitating charge transfer.As a result,the YS-Sb_(2)S_(3)@NSC electrode delivers a high reversible K^(+)storage capacity of 594.58 m A h g^(-1)at 0.1 A g^(-1)and a long cycle life with a slight capacity degradation(0.01%per cycle)for 2000 cycles at 1 A g^(-1)while maintaining outstanding rate capability.Importantly,utilizing in in situ/ex situ microscopic and spectroscopic characterizations,the origins of performance enhancement and K^(+)storage mechanism of Sb_(2)S_(3)were clearly elucidated.This work provides valuable insights into the rational design of high-performance and durable transition metal sulfides-based anodes for PIBs. 展开更多
关键词 Antimony sulfide Yolk-shell structure In situ TEM Potassium-ion batteries Super-stable cyclability
在线阅读 下载PDF
Boosting lithium batteries under harsh operating conditions by a resilient ionogel with liquid-like ionic conductivity 被引量:2
4
作者 Le Yu Qing Liu +6 位作者 Libin Wang Songtao Guo Qiaomei Hu Yaqian Li Xiwei Lan Zhifang Liu Xianluo Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期408-414,I0009,共8页
New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh o... New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh operating conditions. Here we report on the synthesis of a unique ionogel electrolyte for abuse-tolerant lithium batteries. A hierarchically architected silica/polymer scaffold is designed and fabricated through a facile soft chemistry route, which is competent to confine ionic liquids with superior uptake ability (92.4 wt%). The monolithic ionogel exhibits high conductivity and thermal/mechanical stability, featuring high-temperature elastic modulus and dendrite-free lithium cycling. The Li/LiFePO_(4) pouch cells achieve outstanding cyclability at different temperatures up to 150 ℃, and can sustain cutting, crumpling, and even coupled thermal–mechanical abuses. Moreover, the solid-state lithium batteries with LiNi_(0.60)Co_(0.20)Mn_(0.20)O_(2), LiNi_(0.80)Co_(0.15)Al_(0.05)O_(2), and Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2) cathodes demonstrate excellent cycle performances at 60 ℃. These results indicate that the resilient and high-conductivity ionogel electrolyte is promising to realize high-performance lithium batteries with high energy density and safety. 展开更多
关键词 Ionogel electrolytes Lithium batteries SAFETY Harsh operating conditions cyclability
在线阅读 下载PDF
Silk fibroin-based biopolymer composite binders with gradient binding energy and strong adhesion force for high-performance micro-sized silicon anodes 被引量:1
5
作者 Panpan Dong Xiahui Zhang +2 位作者 Julio Zamora John McCloy Min-Kyu Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期442-451,I0010,共11页
Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and ... Micro-sized silicon anodes have shown much promise in large-scale industrial production of high-energy lithium batteries.However,large volume change(>300%)of silicon anodes causes severe particle pulverization and the formation of unstable solid electrolyte interphases during cycling,leading to rapid capacity decay and short cycle life of lithium-ion batteries.When addressing such issues,binder plays key roles in obtaining good structural integrity of silicon anodes.Herein,we report a biopolymer composite binder composed of rigid poly(acrylic acid)(PAA)and flexible silk fibroin(SF)tailored for micro-sized silicon anodes.The PAA/SF binder shows robust gradient binding energy via chemical interactions between carboxyl and amide groups,which can effectively accommodate large volume change of silicon.This PAA/SF binder also shows much stronger adhesion force and improved binding towards high-surface/defective carbon additives,resulting in better electrochemical stability and higher coulombic efficiency,than conventional PAA binder.As such,micro-sized silicon/carbon anodes fabricated with novel PAA/SF binder exhibit much better cyclability(up to 500 cycles at 0.5 C)and enhanced rate capability compared with conventional PAA-based anodes.This work provides new insights into the design of functional binders for high-capacity electrodes suffering from large volume change for the development of nextgeneration lithium batteries. 展开更多
关键词 Micro-sized silicon BINDER Silk fbroin Strong adhesion force Rate capability cyclability
在线阅读 下载PDF
Three-dimensional ordered hierarchically porous carbon materials for high performance Li-Se battery 被引量:1
6
作者 Hongyan Li Wenda Dong +9 位作者 Chao Li Tarek Barakat Minghui Sun Yingying Wang Liang Wu Lang Wang Lei Xia Zhi-Yi Hu Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期624-636,共13页
Developing host materials with high specific surface area, good electron conductivity, and fast ion transportation channel is critical for high performance lithium-selenium(Li-Se) batteries. Herein, a series of three ... Developing host materials with high specific surface area, good electron conductivity, and fast ion transportation channel is critical for high performance lithium-selenium(Li-Se) batteries. Herein, a series of three dimensional ordered hierarchically porous carbon(3D OHPC) materials with micro/meso/macropores are designed and synthesized for Li-Se battery. The porous structure is tuned by following the concept of the generalized Murray’s law to facilitate the mass diffusion and reduce ion transport resistance.The optimized 3D Se/OHPC cathode exhibits a very high 2 nd discharge capacity of 651 m Ah/g and retains 361 m Ah/g after 200 cycles at 0.2 C. Even at a high current rate of 5 C, the battery still shows a discharge capacity as high as 155 m Ah/g. The improved electrochemical performance is attributed to the synergy effect of the interconnected and well-designed micro, meso and macroporosity while shortened ions diffusion pathways of such Murray materials accelerate its ionic and electronic conductivities leading to the enhanced electrochemical reaction. The diffusivity coefficient in Se/OHPC can reach a very high value of 1.3 × 10^(-11)cm^(2)/s, much higher than those in single pore size carbon hosts. Their effective volume expansion accommodation capability and reduced dissolution of polyselenides ensure the high stability of the battery. This work, for the first time, established the clear relationship between textural properties of cathode materials and their performance and demonstrates that the concept of the generalized Murray’s law can be used as efficient guidance for the rational design and synthesis of advanced hierarchically porous materials and the great potential of 3D OHPC materials as a practical high performance cathode material for Li-Se batteries. 展开更多
关键词 3D ordered hierarchically porous carbon(OHPC) Shuttle effect cyclability High rate capability The generalized Murray’s law Li-Se batteries
在线阅读 下载PDF
Tris(trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2 cathode
7
作者 Chunfeng Yan Ying Xu +2 位作者 Jianrong Xia Cuiran Gong Kerong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期659-666,共8页
The influence of tris(trimethylsilyl) borate (TMSB) as an electrolyte additive on lithium ion cells have been studied using Li/LiCo1/3Ni1/3Mn1/3O2 cells at a higher voltage, 4.7 V versus Li/Li+. 1 wt% TMSB can dramati... The influence of tris(trimethylsilyl) borate (TMSB) as an electrolyte additive on lithium ion cells have been studied using Li/LiCo1/3Ni1/3Mn1/3O2 cells at a higher voltage, 4.7 V versus Li/Li+. 1 wt% TMSB can dramatically reduce the capacity fading that occurs during cycling at room temperature (RT) and elevated temperature (60 degrees C). After 150 cycles at 1 C rate (1 C= 278 mAh/g), the capacity retention of Li/LiCo1/3Ni1/3Mn1/3O2 is up to near 72% in the electrolyte with TMSB added, while it is only about 35% in the baseline electrolyte. The electrochemical behaviors, the surface chemistry and structure of Li/LiCo1/3Ni1/3Mn1/3O2 cathode are characterized with charge/discharge test, linear sweep voltammetry (LSV), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), thermal gravimetric analyses (TGA), scanning electron microscope (SEM) and transmission electron microscopy (TEM). These analysis results reveal that the addition of TMSB is able to protectively modify the electrode CEI film in a manner that suppresses electrolyte decomposition and degradation of electrode surface structure, even though at both a higher voltage of 4.7 V and an elevated temperature of 60 degrees C. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Tris(trimethylsilyl) borate (TMSB) Electrolyte additive High voltage RT and 60 degrees C cyclability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部