Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl func...Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.展开更多
基金Project(2025JJ70532)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(21862009,21563016)supported by the National Natural Science Foundation of ChinaProject(2022GX020)supported by the Taian Science and Technology Innovation Development Project,China。
文摘Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.