针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势...针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势场法的思想,设定动态步长加快算法的收敛,提升算法在障碍物空间的探索效率,当算法陷入局部极小值时,采用节点拒绝策略快速脱离。最后,将规划路径进行简化处理,并利用B样条曲线平滑拐点提高路径质量。仿真结果表明,改进算法相比传统RRT算法,扩展更具导向性,收敛速度更快,可以有效避免局部极小值。展开更多
为使交互式水域环卫机器人(Interactive Water Sanitation Vehicle,IWSV)在进行垃圾收集时成功捕获水中浮动垃圾并顺利规避水域障碍物,提出一种将基于采样的快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法与速度障碍模型相结...为使交互式水域环卫机器人(Interactive Water Sanitation Vehicle,IWSV)在进行垃圾收集时成功捕获水中浮动垃圾并顺利规避水域障碍物,提出一种将基于采样的快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法与速度障碍模型相结合的路径规划算法。利用双目摄像头基于视差定位法获取水域动态障碍物的位置坐标,利用IWSV搭载的感应元件获取其自身与障碍物的相对方位角,基于速度障碍法计算可成功避开障碍物的移动角度调整范围,对更优的RRT算法中的随机采样过程进行进一步优化,得到改进的避障路径规划算法。考虑实际应用场景,引入抗积分饱和比例积分微分控制(Proportional Integral Differentiational Control,PID Control)法使航向控制器的控制效果更为精准有效。在实景测试时避障路径规划算法存在稳健性,基于到达时间(Time of Arrival,TOA)定位法进行仿真分析。仿真试验结果表明,该路径规划算法比RRT算法和改进前的RRT算法路径规划效果更优,可靠性更好,可在较短时间内避障并得到较优移动路径。在实景测试时基于TOA的Chan算法更加符合定位估计需求,且IWSV本体感应装置的噪声测算宜在10 m以内。展开更多
针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优...针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优的UAV航迹优化方法。利用RRT算法和基于贪心算法的剪枝优化方法,在二维任务空间中规划出满足避障要求的可行离散航路点。采用多条Dubins曲线平滑连接航路点,根据UAV始末位姿确定首尾曲线端点,基于UAV性能、障碍物和飞行参数的约束关系,建立多约束的航迹优化数学模型。通过粒子群优化算法确定曲线类型,同时优化曲线连接处位姿和曲线半径,获得最短航迹。仿真结果表明:所提方法得到的航迹与其他方法相比,在不同障碍物数量和始末位姿的多种场景中,平均长度缩短了11.48%,在避开障碍物的同时,满足UAV动力学约束。展开更多
文摘针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势场法的思想,设定动态步长加快算法的收敛,提升算法在障碍物空间的探索效率,当算法陷入局部极小值时,采用节点拒绝策略快速脱离。最后,将规划路径进行简化处理,并利用B样条曲线平滑拐点提高路径质量。仿真结果表明,改进算法相比传统RRT算法,扩展更具导向性,收敛速度更快,可以有效避免局部极小值。
文摘为使交互式水域环卫机器人(Interactive Water Sanitation Vehicle,IWSV)在进行垃圾收集时成功捕获水中浮动垃圾并顺利规避水域障碍物,提出一种将基于采样的快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法与速度障碍模型相结合的路径规划算法。利用双目摄像头基于视差定位法获取水域动态障碍物的位置坐标,利用IWSV搭载的感应元件获取其自身与障碍物的相对方位角,基于速度障碍法计算可成功避开障碍物的移动角度调整范围,对更优的RRT算法中的随机采样过程进行进一步优化,得到改进的避障路径规划算法。考虑实际应用场景,引入抗积分饱和比例积分微分控制(Proportional Integral Differentiational Control,PID Control)法使航向控制器的控制效果更为精准有效。在实景测试时避障路径规划算法存在稳健性,基于到达时间(Time of Arrival,TOA)定位法进行仿真分析。仿真试验结果表明,该路径规划算法比RRT算法和改进前的RRT算法路径规划效果更优,可靠性更好,可在较短时间内避障并得到较优移动路径。在实景测试时基于TOA的Chan算法更加符合定位估计需求,且IWSV本体感应装置的噪声测算宜在10 m以内。
文摘针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优的UAV航迹优化方法。利用RRT算法和基于贪心算法的剪枝优化方法,在二维任务空间中规划出满足避障要求的可行离散航路点。采用多条Dubins曲线平滑连接航路点,根据UAV始末位姿确定首尾曲线端点,基于UAV性能、障碍物和飞行参数的约束关系,建立多约束的航迹优化数学模型。通过粒子群优化算法确定曲线类型,同时优化曲线连接处位姿和曲线半径,获得最短航迹。仿真结果表明:所提方法得到的航迹与其他方法相比,在不同障碍物数量和始末位姿的多种场景中,平均长度缩短了11.48%,在避开障碍物的同时,满足UAV动力学约束。