多元时间序列(Multivariate Time Series,MTS)广泛应用于医学、经济、多媒体等领域。针对其相似模式匹配问题,该文提出一种基于2维奇异值分解(Two-Dimensional Singular Value Decomposition,2DSVD)的匹配方法。2DSVD是经典奇异值分解...多元时间序列(Multivariate Time Series,MTS)广泛应用于医学、经济、多媒体等领域。针对其相似模式匹配问题,该文提出一种基于2维奇异值分解(Two-Dimensional Singular Value Decomposition,2DSVD)的匹配方法。2DSVD是经典奇异值分解的扩展,能准确地描述MTS的本质特征。首先对MTS进行2DSVD分解;然后将MTS按行、列组成的协方差矩阵的主特征向量结合原MTS矩阵组成其模式表示矩阵,并借助Euclid范数来度量两个特征模式矩阵之间的相似程度,进而进行多元时间序列的模式匹配。最后通过与直接欧氏距离法、主成分分析、趋势距离、基于点分布特征4种相似匹配方法对3种不同数据规模的数据集进行对比实验,验证了所提方法刻画多种数据规模的多元时间序列特征的有效性和高效性。展开更多
为了提高终端区不同气象场景下的交通流预测准确率,提出一种融合多元时序和模式挖掘(Multivariate time series and pattern mining,MTSPM)的终端区交通流预测模型。首先,给出了一种基于多元时间序列的终端区交通流预测模型,通过深度学...为了提高终端区不同气象场景下的交通流预测准确率,提出一种融合多元时序和模式挖掘(Multivariate time series and pattern mining,MTSPM)的终端区交通流预测模型。首先,给出了一种基于多元时间序列的终端区交通流预测模型,通过深度学习模型CNN-GRUA将终端区的交通需求、天气和策略特征进行融合并用于交通流预测;其次,针对交通流这一单变量时间序列,设计了一种基于趋势分段符号化的时间序列BOP(Bag-of-pattern)表示方法——TSSBOP,通过基于趋势的分段、符号化和模式表示来挖掘交通流序列中的内在模式;最后,根据两个模型在验证集上的预测精度进行加权融合,得到最终的终端区交通流预测值。在广州终端区的历史数据集上的对比实验表明,所提出的TSSBOP表示法能够有效挖掘出原始序列中的模式,所提出的基于MTSPM的终端区交通流预测模型能有效提高不同气象场景下的交通流预测性能。展开更多
在多元时间序列预测方法中,传统的模型无法敏锐地捕获时间序列短期突变信号从而导致预测趋势滞后和误差较大。本文提出了一种基于时钟触发长短期记忆(Clockwork Triggered Long Short Term Memory,CWTLSTM)网络的多元时序预测模型,通过...在多元时间序列预测方法中,传统的模型无法敏锐地捕获时间序列短期突变信号从而导致预测趋势滞后和误差较大。本文提出了一种基于时钟触发长短期记忆(Clockwork Triggered Long Short Term Memory,CWTLSTM)网络的多元时序预测模型,通过增强对短期信息的捕获能力提高了预测精度。CWTLSTM将网络中所有的神经元进行分组,对每个分组赋予不同的激活频率,每一组神经元只在时间步长等于周期的整数倍时才被激活。根据周期是否为1将网络分为主干网络链和短期输入增强链,短期输入增强链在靠近输出位置的时间步上激活时,将输入信息的运算结果单向地传递给主干网络链,增强此时的输入权重,使模型在存储长期信息的基础上能快速响应短期突变信息带来的数据波动。在空气污染数据集和水泥篦冷机数据集上的验证结果表明,本文模型在减少预测误差与趋势判断上均有较好的表现。展开更多
文摘多元时间序列(Multivariate Time Series,MTS)广泛应用于医学、经济、多媒体等领域。针对其相似模式匹配问题,该文提出一种基于2维奇异值分解(Two-Dimensional Singular Value Decomposition,2DSVD)的匹配方法。2DSVD是经典奇异值分解的扩展,能准确地描述MTS的本质特征。首先对MTS进行2DSVD分解;然后将MTS按行、列组成的协方差矩阵的主特征向量结合原MTS矩阵组成其模式表示矩阵,并借助Euclid范数来度量两个特征模式矩阵之间的相似程度,进而进行多元时间序列的模式匹配。最后通过与直接欧氏距离法、主成分分析、趋势距离、基于点分布特征4种相似匹配方法对3种不同数据规模的数据集进行对比实验,验证了所提方法刻画多种数据规模的多元时间序列特征的有效性和高效性。
基金supported by the National Key R&D Program of China(Nos.2022YFB2602403,2022YFB2602401)the National Natural Science Foundation of China(No.71971112)。
文摘为了提高终端区不同气象场景下的交通流预测准确率,提出一种融合多元时序和模式挖掘(Multivariate time series and pattern mining,MTSPM)的终端区交通流预测模型。首先,给出了一种基于多元时间序列的终端区交通流预测模型,通过深度学习模型CNN-GRUA将终端区的交通需求、天气和策略特征进行融合并用于交通流预测;其次,针对交通流这一单变量时间序列,设计了一种基于趋势分段符号化的时间序列BOP(Bag-of-pattern)表示方法——TSSBOP,通过基于趋势的分段、符号化和模式表示来挖掘交通流序列中的内在模式;最后,根据两个模型在验证集上的预测精度进行加权融合,得到最终的终端区交通流预测值。在广州终端区的历史数据集上的对比实验表明,所提出的TSSBOP表示法能够有效挖掘出原始序列中的模式,所提出的基于MTSPM的终端区交通流预测模型能有效提高不同气象场景下的交通流预测性能。
文摘在多元时间序列预测方法中,传统的模型无法敏锐地捕获时间序列短期突变信号从而导致预测趋势滞后和误差较大。本文提出了一种基于时钟触发长短期记忆(Clockwork Triggered Long Short Term Memory,CWTLSTM)网络的多元时序预测模型,通过增强对短期信息的捕获能力提高了预测精度。CWTLSTM将网络中所有的神经元进行分组,对每个分组赋予不同的激活频率,每一组神经元只在时间步长等于周期的整数倍时才被激活。根据周期是否为1将网络分为主干网络链和短期输入增强链,短期输入增强链在靠近输出位置的时间步上激活时,将输入信息的运算结果单向地传递给主干网络链,增强此时的输入权重,使模型在存储长期信息的基础上能快速响应短期突变信息带来的数据波动。在空气污染数据集和水泥篦冷机数据集上的验证结果表明,本文模型在减少预测误差与趋势判断上均有较好的表现。