Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves...Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.展开更多
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,...Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.展开更多
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er...Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.展开更多
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a...Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.展开更多
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith...With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method.展开更多
A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timiz...A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies.展开更多
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn...The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.展开更多
The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive...The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials.展开更多
Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture ...Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively.展开更多
The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxyge...The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxygen ratios of 2 to 4.5 and gas hourly space velocity (GHSV) of 100 min^-1.Correlation of the kinetic data has been performed with the proposed mechanisms.The selected equations have been regressed with experimental data accompanied by genetic algorithm (GA) in order to obtain optimized parameters.After investigation the Langmuir-Hinshelwood mechanism was selected as the best mechanism,and Arrhenius and adsorption parameters of this model were obtained by linear regression.In this research the Marquardt algorithm was also used and its results were compared with those of genetic algorithm.It should be noted that the Marquardt algorithm is sensitive to the selection of initial values and there is possibility to trap in a local minimum.展开更多
Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro...Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.展开更多
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to thi...Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to this problem.However,in order to apply the approach,a state-space flight delay model needs to be established to represent the relationship among system states,as well as the relationship between system states and input/output variables.Based on the analysis of delay event sequence in a single flight,a state-space mixture model is established and input variables in the model are studied.Case study is also carried out on historical flight delay data.In addition,the genetic expectation-maximization(EM)algorithm is used to obtain the global optimal estimates of parameters in the mixture model,and results fit the historical data.At last,the model is validated in Kolmogorov-Smirnov tests.Results show that the model has reasonable goodness of fitting the data,and the search performance of traditional EM algorithm can be improved by using the genetic algorithm.展开更多
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ...To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ...Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.展开更多
Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the d...Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the dielectric constant, the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm (GA) when an electromagnetic wave is incident on the FSS at a wide angle, and an optimized FSS structure and transmission characteristics are obtained. The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°, thereby laying the foundation for the application of FSS to curved surfaces at wide angles.展开更多
An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a mu...An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a multi-extrema optimization problem such that finding the fittest solution from a set of potential disparity maps. Among a wide variety of optimization techniques, GAs are proven to be potentially effective methods for the global optimization problems with large search space. With this idea, each disparity map is viewed as an individual and the disparity values are encoded as chromosomes, so each individual has lots of chromosomes in the approach. Then, several matching constraints are formulated into an objective function, and GAs are used to search the global optimal solution for the problem. Furthermore, the coarse-to-fine strategy has been embedded in the approach so as to reduce the matching ambiguity and the time consumption. Finally, experimental results on synthetic and real images show the performance of the work.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
基金support from the National Science Foundation of China(Grant Nos.62075078 and 62135004)the Knowledge Innovation Program of Wuhan-Shuguang Project(Grant No.2022010801020095).
文摘Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
基金supported by the National Natural Science Foundation of China (No.42172343)。
文摘Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.
基金funded by Shanghai Natural Science Foundation(No.12ZR1414700)。
文摘Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.
文摘Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.
基金supported by the State Grid Liaoning Electric Power Supply CO, LTDthe financial support for the “Key Technology and Application Research of the Self-Service Grid Big Data Governance (No.SGLNXT00YJJS1800110)”
文摘With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method.
文摘A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies.
文摘The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974300,11974299,12074150)the Natural Science Foundation of Hunan Province,China(Grant No.2021JJ30645)+3 种基金Scientific Research Fund of Hunan Provincial Education Department(Grant Nos.20K127,20A503,and 20B582)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13093)the Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX20220544)Youth Science and Technology Talent Project of Hunan Province,China(Grant No.2022RC1197)。
文摘The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials.
基金Supported by the Natural Science Foundation of Jiangxi Province(2009GZC0104)the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ10521)~~
文摘Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively.
基金supported by the Iran Polymer and Petrochemical Institute (IPPI)
文摘The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxygen ratios of 2 to 4.5 and gas hourly space velocity (GHSV) of 100 min^-1.Correlation of the kinetic data has been performed with the proposed mechanisms.The selected equations have been regressed with experimental data accompanied by genetic algorithm (GA) in order to obtain optimized parameters.After investigation the Langmuir-Hinshelwood mechanism was selected as the best mechanism,and Arrhenius and adsorption parameters of this model were obtained by linear regression.In this research the Marquardt algorithm was also used and its results were compared with those of genetic algorithm.It should be noted that the Marquardt algorithm is sensitive to the selection of initial values and there is possibility to trap in a local minimum.
文摘Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
基金Supported by the High Technology Research and Development Programme of China(2006AA12A106)~~
文摘Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to this problem.However,in order to apply the approach,a state-space flight delay model needs to be established to represent the relationship among system states,as well as the relationship between system states and input/output variables.Based on the analysis of delay event sequence in a single flight,a state-space mixture model is established and input variables in the model are studied.Case study is also carried out on historical flight delay data.In addition,the genetic expectation-maximization(EM)algorithm is used to obtain the global optimal estimates of parameters in the mixture model,and results fit the historical data.At last,the model is validated in Kolmogorov-Smirnov tests.Results show that the model has reasonable goodness of fitting the data,and the search performance of traditional EM algorithm can be improved by using the genetic algorithm.
文摘To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
文摘Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647105)
文摘Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the dielectric constant, the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm (GA) when an electromagnetic wave is incident on the FSS at a wide angle, and an optimized FSS structure and transmission characteristics are obtained. The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°, thereby laying the foundation for the application of FSS to curved surfaces at wide angles.
文摘An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a multi-extrema optimization problem such that finding the fittest solution from a set of potential disparity maps. Among a wide variety of optimization techniques, GAs are proven to be potentially effective methods for the global optimization problems with large search space. With this idea, each disparity map is viewed as an individual and the disparity values are encoded as chromosomes, so each individual has lots of chromosomes in the approach. Then, several matching constraints are formulated into an objective function, and GAs are used to search the global optimal solution for the problem. Furthermore, the coarse-to-fine strategy has been embedded in the approach so as to reduce the matching ambiguity and the time consumption. Finally, experimental results on synthetic and real images show the performance of the work.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.