Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology.Poly(ethylene terephthalate)(PET)is one of the most produced plastics in the world.Enzymatic decomposition holds...Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology.Poly(ethylene terephthalate)(PET)is one of the most produced plastics in the world.Enzymatic decomposition holds the promise of recovering monomers from PET plastic,and the monomers can be used to regenerate new PET products.However,there are still limitations in the activity and thermal stability of the existing PET hydrolases.The recent study by Lu et al.introduced a novel PET hydrolase via machine learning-aided engineering.The obtained PET hydrolase showed excellent activity and thermal stability in the hydrolysis of PET and is capable of directly degrading large amounts of postconsumer PET products.This approach provides an effective method for recycling PET waste and is expected to improve the current state of plastic pollution worldwide.展开更多
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction...Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.展开更多
基金support from the Beijing Municipal Natural Science Foundation(2222012)the National Natural Science Foundation of China(Grant No.52070116)+1 种基金the Key-Area Research and Development Program of Guangdong Province(2020B1111380001)the Tsinghua University-Shanxi Clean Energy Research Institute Innovation Project Seed Fund is gratefully acknowledged.
文摘Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology.Poly(ethylene terephthalate)(PET)is one of the most produced plastics in the world.Enzymatic decomposition holds the promise of recovering monomers from PET plastic,and the monomers can be used to regenerate new PET products.However,there are still limitations in the activity and thermal stability of the existing PET hydrolases.The recent study by Lu et al.introduced a novel PET hydrolase via machine learning-aided engineering.The obtained PET hydrolase showed excellent activity and thermal stability in the hydrolysis of PET and is capable of directly degrading large amounts of postconsumer PET products.This approach provides an effective method for recycling PET waste and is expected to improve the current state of plastic pollution worldwide.
基金S.G.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 52272144,51972076)the Heilongjiang Provincial Natural Science Foundation of China(JQ2022E001)+4 种基金the Natural Science Foundation of Shandong Province(ZR2020ZD42)the Fundamental Research Funds for the Central Universities.H.D.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 22205048)China Postdoctoral Science Foundation(2022M710931 and 2023T160154)Heilongjiang Postdoctoral Science Foundation(LBH-Z22010)G.Y.acknowledges the financial support from the National Science Foundation of Heilongjiang Education Department(324022075).
文摘Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.