Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cyc...Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cycling and promoting climate change mitigation.Southwest China is characterized by complex topographic features and forest canopy structures,complicating methods for mapping aboveground biomass and its dynamics.The integration of continuous Landsat images and national forest inventory data provides an alternative approach to develop a long-term monitoring program of forest aboveground biomass dynamics.This study explores the development of a methodological framework using historical national forest inventory plot data and Landsat TM timeseries images.This method was formulated by comparing two parametric methods:Linear Regression for Multiple Independent Variables(MLR),and Partial Least Square Regression(PLSR);and two nonparametric methods:Random Forest(RF)and Gradient Boost Regression Tree(GBRT)based on the state of forest aboveground biomass and change models.The methodological framework mapped Pinus densata aboveground biomass and its changes over time in Shangri-la,Yunnan,China.Landsat images and national forest inventory data were acquired for 1987,1992,1997,2002 and 2007.The results show that:(1)correlation and homogeneity texture measures were able to characterize forest canopy structures,aboveground biomass and its dynamics;(2)GBRT and RF predicted Pinus densata aboveground biomass and its changes better than PLSR and MLR;(3)GBRT was the most reliable approach in the estimation of aboveground biomass and its changes;and,(4)the aboveground biomass change models showed a promising improvement of prediction accuracy.This study indicates that the combination of GBRT state and change models developed using temporal Landsat and national forest inventory data provides the potential for developing a methodological framework for the long-term mapping and monitoring program of forest aboveground biomass and its changes in Southwest China.展开更多
In Central Europe,anthropogenic coniferous monocultures have been subject to conversion to more diverse mixed forests since the 1990s,however,they are still abundant across many forest landscapes.Artificial and natura...In Central Europe,anthropogenic coniferous monocultures have been subject to conversion to more diverse mixed forests since the 1990s,however,they are still abundant across many forest landscapes.Artificial and natural tree regeneration both play a key role during conversion by determining the species composition and structure of the future forests.Many abiotic and biotic factors can potentially influence the regeneration process and its specific combinations or interactions may be different among tree species and its developmental stages.Here,we aimed to identify and quantify the effect of the most important drivers on the density of the most abundant regenerating tree species(i.e.,Norway spruce and European beech),as well as on species and structural diversity of the tree regeneration.We studied tree regeneration in four former monospecific coniferous stand types(i.e.,Norway spruce,Scots pine,European larch,and Douglas fir)in Southwest Germany that have been under conversion to mixed forests since the 1990s.We sampled tree regeneration in four growth height classes together with a variety of potentially influencing factors on 108 sampling plots and applied multivariate analyses.We identified light availability in the understorey,stand structural attributes,browsing pressure,and diaspore source abundance as the most important factors for the density and diversity of tree regeneration.Particularly,we revealed speciesspecific differences in drivers of regeneration density.While spruce profited from increasing light availability and decreasing stand basal area,beech benefited either from a minor reduction or more strikingly from an increase in overstorey density.Increasing diaspore source abundance positively and a high browsing pressure negatively affected both species equally.Our results suggest that humus and topsoil properties were modified during conversion,probably due to changes in tree species composition and silvicultural activities.The species and structural diversity of the tree regeneration benefitted from increasing light availability,decreasing stand basal area,and a low to moderate browsing pressure.We conclude that forest managers may carefully equilibrate among the regulation of overstorey cover,stand basal area,and browsing pressure to fulfil the objectives of forest conversion,i.e.,establishing and safeguarding a diverse tree regeneration to promote the development of mature mixed forests in the future.展开更多
The inflection point is an important feature of sigmoidal height-diameter(H-D)models.It is often cited as one of the properties favoring sigmoidal model forms.However,there are very few studies analyzing the inflectio...The inflection point is an important feature of sigmoidal height-diameter(H-D)models.It is often cited as one of the properties favoring sigmoidal model forms.However,there are very few studies analyzing the inflection points of H-D models.The goals of this study were to theoretically and empirically examine the behaviors of inflection points of six common H-D models with a regional dataset.The six models were the Wykoff(WYK),Schumacher(SCH),Curtis(CUR),HossfeldⅣ(HOS),von Bertalanffy-Richards(VBR),and Gompertz(GPZ)models.The models were first fitted in their base forms with tree species as random effects and were then expanded to include functional traits and spatial distribution.The distributions of the estimated inflection points were similar between the two-parameter models WYK,SCH,and CUR,but were different between the threeparameter models HOS,VBR,and GPZ.GPZ produced some of the largest inflection points.HOS and VBR produced concave H-D curves without inflection points for 12.7%and 39.7%of the tree species.Evergreen species or decreasing shade tolerance resulted in larger inflection points.The trends in the estimated inflection points of HOS and VBR were entirely opposite across the landscape.Furthermore,HOS could produce concave H-D curves for portions of the landscape.Based on the studied behaviors,the choice between two-parameter models may not matter.We recommend comparing seve ral three-parameter model forms for consistency in estimated inflection points before deciding on one.Believing sigmoidal models to have inflection points does not necessarily mean that they will produce fitted curves with one.Our study highlights the need to integrate analysis of inflection points into modeling H-D relationships.展开更多
An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis sugges...An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.展开更多
Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories es...Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories estimate forest characteristics for grid cell areas(pixels),which are then usually summarized at the stand level.Using the ALS-based high-resolution Norwegian Forest Resource Maps(16 m×16 m pixel resolution)alongside with stand-level growth and yield models,this study explores the impact of three levels of pixel aggregation(standlevel,stand-level with species strata,and pixel-level)on projected stand development.The results indicate significant differences in the projected outputs based on the aggregation level.Notably,the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation,ranging from-301 to+253 m^(3)·ha^(-1)for single stands.The differences were,on average,higher for broadleaves than for spruce and pine dominated stands,and for mixed stands and stands with higher variability than for pure and homogenous stands.In conclusion,this research underscores the critical role of input data resolution in forest planning and management,emphasizing the need for improved data collection practices to ensure sustainable forest management.展开更多
The aim of this research was to evaluate the amount of woody debris (m3/ha) on the forest floor and the associated wood-colonizing fungi. The study was performed in the Taborz region, known for its Scots pine provenan...The aim of this research was to evaluate the amount of woody debris (m3/ha) on the forest floor and the associated wood-colonizing fungi. The study was performed in the Taborz region, known for its Scots pine provenance experiments, against the background of a recently launched Polish legislation to protect the biodiversity on the forest floor in managed (harvested) stands. We investigated a managed stand (136-years-old) and the reserve stand ‘Sosna Taborska’(261-years-old). In the reserve stand, the mean volume of woody debris was six times higher than in the managed forests, i.e. 65 versus 11 m3/ha. In addition, in the reserve stand, the number of fungi taxa colonizing the dead wood was larger than in the managed stands, with a higher number of fruitbodies. Total fungal richness was higher in the reserve than in the managed stand, i.e. 28 versus 12 species. The dominant taxa at both sites were Fomitopsis pinicola and Fomes The aim of this research was to evaluate the amount of woody debris (m^3/ha) on the forest floor and the associated wood-colonizing fungi. The study was performed in the Taborz region, known for its Scots pine provenance experiments, against the background of a recently launched Polish legislation to protect the biodiversity on the forest floor in managed (harvested) stands. We investigated a managed stand (136-years-old) and the reserve stand ‘Sosna Taborska’(261-years-old). In the reserve stand, the mean volume of woody debris was six times higher than in the managed forests, i.e. 65 versus 11 m^3/ha. In addition, in the reserve stand, the number of fungi taxa colonizing the dead wood was larger than in the managed stands, with a higher number of fruitbodies. Total fungal richness was higher in the reserve than in the managed stand, i.e. 28 versus 12 species. The dominant taxa at both sites were Fomitopsis pinicola and Fomes fomentarius, although some taxa were only found in the reserve (e.g., Stereum hirsutum). The volume of woody debris as well as the diversity of fungi in the managed stand were lower than in the reserve, albeit greater than in other Scots pine stands in Poland. These results testify to the gains in biodiversity yielded by the management conservation management approach at the reserve stand.展开更多
Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of ...Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.展开更多
A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being high...A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being highly desiccation-sensitive. The seed moisture content of fresh fruits was higher than 60%. When the seeds were naturally dried for 30 days, their moisture content declined to 30.2% and their viability was completely lost. The seed germination percentage had a small increase at the beginning of desiccation and then decreased rapidly. The relative electrical conductivity of the A. chinensis seeds increased along with a decrease in seed moisture content. However, there was an abnormal increase in relative electrical conductivity when the seed moisture content was between 53.7% and 50.9%. Superoxide dismutase (SOD) activity decreased rapidly in the period of desiccation except for an abnormality when the seed moisture content was between 53.7% and 50.9%. Malondialdehyde (MDA) content increased slowly at the early stage of desiccation and then rose rapidly after the moisture content was below 50.9%. The soluble sugar content in seeds slowly increased with the increasing period of desiccation. The seed germination percentage was at the high level when seed moisture content was in range of 47%- 60%, which suggests that this was the optimum moisture content for maintaining A. chinensis seed viability.展开更多
Oil from seeds of Diospyros lotus was extracted using a conventional method with two different solvents:hexane and petroleum ether. A central composite design with response surface methodology were used to optimize th...Oil from seeds of Diospyros lotus was extracted using a conventional method with two different solvents:hexane and petroleum ether. A central composite design with response surface methodology were used to optimize the process. A second-order polynomial equation was employed, and ANOVA was applied to evaluate the impact of various operating parameters including extraction temperature(x_1; 44.9–70.1 °C), extraction time(x_2;5.0–10.0 h) and solvent to solid ratio(x_3;11.6–28.4 mL g^(-1)), on oil yield. Experiments to validate the model showed decent conformity between predicted and actual values. Extraction conditions for optimal oil yield were 61 °C, 8.75 h extraction duration and 19.25 mL g^(-1) solvent to solid ratio. Under these conditions, the oil yield was predicted to be 5.1340%. Oil samples obtained were then analyzed using gas chromatography. The fatty acid composition revealed the major fatty acids to be oleic acid(C18:1) and linoleic acid(C18:2). The analysis of oil also demonstrated a decent ratio between omega-3 and omega-6 fatty acids. The structure of seeds was imaged using scanning electron microscopy. Oil quality was analyzed thermogravimetrically and by Fourier transform infrared spectroscopy. The assigned nutritional features of the D. lotus oil suggested that it can be used as an edible oil in pharmaceutical and food industry in the future.展开更多
基金supported by the State Forestry Administration of China under the national forestry commonwealth project grant#201404309the Expert Workstation of Academician Tang Shouzheng of Yunnan Province,the Yunnan provincial key project of Forestrythe Research Center of Kunming Forestry Information Engineering Technology
文摘Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cycling and promoting climate change mitigation.Southwest China is characterized by complex topographic features and forest canopy structures,complicating methods for mapping aboveground biomass and its dynamics.The integration of continuous Landsat images and national forest inventory data provides an alternative approach to develop a long-term monitoring program of forest aboveground biomass dynamics.This study explores the development of a methodological framework using historical national forest inventory plot data and Landsat TM timeseries images.This method was formulated by comparing two parametric methods:Linear Regression for Multiple Independent Variables(MLR),and Partial Least Square Regression(PLSR);and two nonparametric methods:Random Forest(RF)and Gradient Boost Regression Tree(GBRT)based on the state of forest aboveground biomass and change models.The methodological framework mapped Pinus densata aboveground biomass and its changes over time in Shangri-la,Yunnan,China.Landsat images and national forest inventory data were acquired for 1987,1992,1997,2002 and 2007.The results show that:(1)correlation and homogeneity texture measures were able to characterize forest canopy structures,aboveground biomass and its dynamics;(2)GBRT and RF predicted Pinus densata aboveground biomass and its changes better than PLSR and MLR;(3)GBRT was the most reliable approach in the estimation of aboveground biomass and its changes;and,(4)the aboveground biomass change models showed a promising improvement of prediction accuracy.This study indicates that the combination of GBRT state and change models developed using temporal Landsat and national forest inventory data provides the potential for developing a methodological framework for the long-term mapping and monitoring program of forest aboveground biomass and its changes in Southwest China.
基金funded by the Bavarian Ministry for Food,Agriculture and Forestry (Grant No.F053)support by the Open Access Publication Funds/transformative agreements of the Gottingen University
文摘In Central Europe,anthropogenic coniferous monocultures have been subject to conversion to more diverse mixed forests since the 1990s,however,they are still abundant across many forest landscapes.Artificial and natural tree regeneration both play a key role during conversion by determining the species composition and structure of the future forests.Many abiotic and biotic factors can potentially influence the regeneration process and its specific combinations or interactions may be different among tree species and its developmental stages.Here,we aimed to identify and quantify the effect of the most important drivers on the density of the most abundant regenerating tree species(i.e.,Norway spruce and European beech),as well as on species and structural diversity of the tree regeneration.We studied tree regeneration in four former monospecific coniferous stand types(i.e.,Norway spruce,Scots pine,European larch,and Douglas fir)in Southwest Germany that have been under conversion to mixed forests since the 1990s.We sampled tree regeneration in four growth height classes together with a variety of potentially influencing factors on 108 sampling plots and applied multivariate analyses.We identified light availability in the understorey,stand structural attributes,browsing pressure,and diaspore source abundance as the most important factors for the density and diversity of tree regeneration.Particularly,we revealed speciesspecific differences in drivers of regeneration density.While spruce profited from increasing light availability and decreasing stand basal area,beech benefited either from a minor reduction or more strikingly from an increase in overstorey density.Increasing diaspore source abundance positively and a high browsing pressure negatively affected both species equally.Our results suggest that humus and topsoil properties were modified during conversion,probably due to changes in tree species composition and silvicultural activities.The species and structural diversity of the tree regeneration benefitted from increasing light availability,decreasing stand basal area,and a low to moderate browsing pressure.We conclude that forest managers may carefully equilibrate among the regulation of overstorey cover,stand basal area,and browsing pressure to fulfil the objectives of forest conversion,i.e.,establishing and safeguarding a diverse tree regeneration to promote the development of mature mixed forests in the future.
文摘The inflection point is an important feature of sigmoidal height-diameter(H-D)models.It is often cited as one of the properties favoring sigmoidal model forms.However,there are very few studies analyzing the inflection points of H-D models.The goals of this study were to theoretically and empirically examine the behaviors of inflection points of six common H-D models with a regional dataset.The six models were the Wykoff(WYK),Schumacher(SCH),Curtis(CUR),HossfeldⅣ(HOS),von Bertalanffy-Richards(VBR),and Gompertz(GPZ)models.The models were first fitted in their base forms with tree species as random effects and were then expanded to include functional traits and spatial distribution.The distributions of the estimated inflection points were similar between the two-parameter models WYK,SCH,and CUR,but were different between the threeparameter models HOS,VBR,and GPZ.GPZ produced some of the largest inflection points.HOS and VBR produced concave H-D curves without inflection points for 12.7%and 39.7%of the tree species.Evergreen species or decreasing shade tolerance resulted in larger inflection points.The trends in the estimated inflection points of HOS and VBR were entirely opposite across the landscape.Furthermore,HOS could produce concave H-D curves for portions of the landscape.Based on the studied behaviors,the choice between two-parameter models may not matter.We recommend comparing seve ral three-parameter model forms for consistency in estimated inflection points before deciding on one.Believing sigmoidal models to have inflection points does not necessarily mean that they will produce fitted curves with one.Our study highlights the need to integrate analysis of inflection points into modeling H-D relationships.
基金supported by the Sino-German Postdoc Scholarship Program of the China Scholarship Council(CSC)the German Academic Exchange Service(DAAD)+4 种基金supported in part by the National Natural Science Foundation of China(Nos.32071541,41971071)the Ministry of Science and Technology of China(Nos.2021FY100200,2021FY100702,2023YFF0805802)the Youth Innovation Promotion Association,CAS(No.2021392)the International Partnership Program,CAS(No.151853KYSB20190027)the“Climate Change Research Initiative of the Bavarian National Parks”funded by the Bavarian State Ministry of the Environment and Consumer Protection.
文摘An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.
文摘Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories estimate forest characteristics for grid cell areas(pixels),which are then usually summarized at the stand level.Using the ALS-based high-resolution Norwegian Forest Resource Maps(16 m×16 m pixel resolution)alongside with stand-level growth and yield models,this study explores the impact of three levels of pixel aggregation(standlevel,stand-level with species strata,and pixel-level)on projected stand development.The results indicate significant differences in the projected outputs based on the aggregation level.Notably,the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation,ranging from-301 to+253 m^(3)·ha^(-1)for single stands.The differences were,on average,higher for broadleaves than for spruce and pine dominated stands,and for mixed stands and stands with higher variability than for pure and homogenous stands.In conclusion,this research underscores the critical role of input data resolution in forest planning and management,emphasizing the need for improved data collection practices to ensure sustainable forest management.
基金supported by statutory funds No.15/20.610.028-300 from the Faculty of Environmental Management and Agriculture of the University of Warmia and Mazury in Olsztyn
文摘The aim of this research was to evaluate the amount of woody debris (m3/ha) on the forest floor and the associated wood-colonizing fungi. The study was performed in the Taborz region, known for its Scots pine provenance experiments, against the background of a recently launched Polish legislation to protect the biodiversity on the forest floor in managed (harvested) stands. We investigated a managed stand (136-years-old) and the reserve stand ‘Sosna Taborska’(261-years-old). In the reserve stand, the mean volume of woody debris was six times higher than in the managed forests, i.e. 65 versus 11 m3/ha. In addition, in the reserve stand, the number of fungi taxa colonizing the dead wood was larger than in the managed stands, with a higher number of fruitbodies. Total fungal richness was higher in the reserve than in the managed stand, i.e. 28 versus 12 species. The dominant taxa at both sites were Fomitopsis pinicola and Fomes The aim of this research was to evaluate the amount of woody debris (m^3/ha) on the forest floor and the associated wood-colonizing fungi. The study was performed in the Taborz region, known for its Scots pine provenance experiments, against the background of a recently launched Polish legislation to protect the biodiversity on the forest floor in managed (harvested) stands. We investigated a managed stand (136-years-old) and the reserve stand ‘Sosna Taborska’(261-years-old). In the reserve stand, the mean volume of woody debris was six times higher than in the managed forests, i.e. 65 versus 11 m^3/ha. In addition, in the reserve stand, the number of fungi taxa colonizing the dead wood was larger than in the managed stands, with a higher number of fruitbodies. Total fungal richness was higher in the reserve than in the managed stand, i.e. 28 versus 12 species. The dominant taxa at both sites were Fomitopsis pinicola and Fomes fomentarius, although some taxa were only found in the reserve (e.g., Stereum hirsutum). The volume of woody debris as well as the diversity of fungi in the managed stand were lower than in the reserve, albeit greater than in other Scots pine stands in Poland. These results testify to the gains in biodiversity yielded by the management conservation management approach at the reserve stand.
基金funded by the Czech University of Life Sciences Prague(Internal Grant Agency:A_03_22-43110/1312/3101)the Czech Science(GACR 21-27454S)。
文摘Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.
文摘A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being highly desiccation-sensitive. The seed moisture content of fresh fruits was higher than 60%. When the seeds were naturally dried for 30 days, their moisture content declined to 30.2% and their viability was completely lost. The seed germination percentage had a small increase at the beginning of desiccation and then decreased rapidly. The relative electrical conductivity of the A. chinensis seeds increased along with a decrease in seed moisture content. However, there was an abnormal increase in relative electrical conductivity when the seed moisture content was between 53.7% and 50.9%. Superoxide dismutase (SOD) activity decreased rapidly in the period of desiccation except for an abnormality when the seed moisture content was between 53.7% and 50.9%. Malondialdehyde (MDA) content increased slowly at the early stage of desiccation and then rose rapidly after the moisture content was below 50.9%. The soluble sugar content in seeds slowly increased with the increasing period of desiccation. The seed germination percentage was at the high level when seed moisture content was in range of 47%- 60%, which suggests that this was the optimum moisture content for maintaining A. chinensis seed viability.
基金the University of Kashan, especially the Deputy of Research, for financial support (Grant: Pajoohaneh #1394/12)
文摘Oil from seeds of Diospyros lotus was extracted using a conventional method with two different solvents:hexane and petroleum ether. A central composite design with response surface methodology were used to optimize the process. A second-order polynomial equation was employed, and ANOVA was applied to evaluate the impact of various operating parameters including extraction temperature(x_1; 44.9–70.1 °C), extraction time(x_2;5.0–10.0 h) and solvent to solid ratio(x_3;11.6–28.4 mL g^(-1)), on oil yield. Experiments to validate the model showed decent conformity between predicted and actual values. Extraction conditions for optimal oil yield were 61 °C, 8.75 h extraction duration and 19.25 mL g^(-1) solvent to solid ratio. Under these conditions, the oil yield was predicted to be 5.1340%. Oil samples obtained were then analyzed using gas chromatography. The fatty acid composition revealed the major fatty acids to be oleic acid(C18:1) and linoleic acid(C18:2). The analysis of oil also demonstrated a decent ratio between omega-3 and omega-6 fatty acids. The structure of seeds was imaged using scanning electron microscopy. Oil quality was analyzed thermogravimetrically and by Fourier transform infrared spectroscopy. The assigned nutritional features of the D. lotus oil suggested that it can be used as an edible oil in pharmaceutical and food industry in the future.