Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. H...Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.展开更多
The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slur...The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slurry, which is related to CPB mixture design and the temperature underground. This paper presented an experimental study investigating the effects of binder type, content, water chemical properties and content, and temperature, on the rheological properties of CPB material prepared using the tailings of a copper mine in South Australia. Portland cement(PC), a newly released commercially manufactured cement called Minecem(MC) and fly ash(FA) were used as the binders added to the mine tailing materials. Various amounts of two different water types were added to the mixtures in the preparation of backfill material slurry. Six different temperatures ranging from 5 to 60 °C were to investigate the effect of temperature on CPB rheology. Overall, the increasing water content and decreasing temperature lead to lower yield stress. Based on the results obtained from the rheological properties of CPB slurry, it was found that at room temperature(25 °C), with regards to the unconfined compressive strength(UCS) performance, the replacement of 4% PC mixed CPB(28 days UCS 425 k Pa) to 3% MC mixed CPB(28 days UCS 519 k Pa), reduced the slurry yield stress from 210.7 to 178.5 Pa. The results also showed that the chemical composition of water affects the yield stress of CPB slurry and that MC mitigates the negative effect of mine-processed water(MW) and thus lead to improve the rheological properties of the slurry. However, the results suggested that the rheological properties of a mixture using MC is very sensitive to the water volume and temperature change. Therefore, using MC in backfill requires better quality control in slump mixing.展开更多
Geotechnical stability is a major concern for the long-term safety and integrity of underground infrastructures such as tunnels, railway stations, mine shafts and hydraulic power chambers. An effective geotechnical mo...Geotechnical stability is a major concern for the long-term safety and integrity of underground infrastructures such as tunnels, railway stations, mine shafts and hydraulic power chambers. An effective geotechnical monitoring system is able to provide adequate warning to underground personnel prior to any unexpected major geotechnical failure. This paper reviews the conventional geotechnical monitoring sensors and the emerging Fibre Optic Sensing(FOS) techniques, pointing out their unique features and major differences. Recent advances in various FOS based monitoring systems, including Brillouin time domain distributed optical sensors and fibre Bragg grating(FBG) sensors, are investigated through a critical review of the laboratory studies and field applications used for underground geotechnical monitoring. Particular emphasis is given to fibre packaging, temperature compensation, installation methods and instrumentation performance in the underground environment. A detailed discussion of the advantages and limitations of each FOS monitoring system is also presented in this paper.展开更多
The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced...The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced by the graphitic carbon nitride/carbon nanotube(g-C_3 N_4/CNT) composite toward inhibited shuttling behavior and improved battery performance.The obtained g-C_3 N_4 delivers a unique spongelike architecture with massive ion transfer pathways and fully exposed active interfaces,while the abundant C-N heteroatomic structures impose strong chemical immobilization toward lithium polysulfides.Combined with the highly conductive agent,the g-C_3 N_4/CNT reinforced separator is endowed with great capability of confining and reutilizing the active sulfur within the cathode,thus contributing to an efficient and stable sulfur electrochemistry.Benefiting from these synergistic attributes,Li-S cells based on g-C_3 N_4/CNT separator exhibit an excellent cyclability with a minimum decay rate of 0.03% per cycle over 500 cycles and decent rate capability up to 2 C.Moreover,a high areal capacity of 7.69 mAh cm^(-2)can be achieved under a raised sulfur loading up to 10.1 mg cm^(-2).demonstrating a facile and efficient pathway toward superior Li-S batteries.展开更多
Hydraulic slotting in a gas drainage borehole is an effective method of enhancing gas drainage perfor- mance. However, it frequently occurs that a large amount of slotting products (mainly the coal slurry and gas) i...Hydraulic slotting in a gas drainage borehole is an effective method of enhancing gas drainage perfor- mance. However, it frequently occurs that a large amount of slotting products (mainly the coal slurry and gas) intensely spurt out of the borehole during the slotting, which adversely affects the slotting efficiency. Despite extensive previous investigations on the mechanism and prevention-device design of the spurt during ordinary borehole drilling, a very few studies has focused on the spurt in the s Ottlng pro ] " _ cess. The slotting spurt is mainly caused by two reasons: the coal and gas outburst in the borehole and the borehole deslagging blockage. This paper focuses on the second reason, and investigates the hydraulic deslagging flow patterns in the annular space between the drill pipe and borehole wall Results show that there are six deslagging flow patterns when the drill pipe is still: pure slurry flow, pure gas flow, bubble flow, intermittent flow, layering flow and annular flow. When the drill pipe rotates, each of those six flow patterns changes due to the Taylor vortex effect. Outcomes of this study could help to better understand the slotting-spurt mechanism and provide guidance on the anti-spurt strategies through eliminating the borehole deslagging blockage.展开更多
The system controlled in synchronous frame is commonly used. However, it is a problem how to transform the controller in synchronous frame to stationary frame. This paper deduces the stationary frame equivalent model ...The system controlled in synchronous frame is commonly used. However, it is a problem how to transform the controller in synchronous frame to stationary frame. This paper deduces the stationary frame equivalent model of arbitrarily controller in synchronous frame. The equivalent model can reflect the control performance of the input signal at different frequency accurately. The unified frequency-domain model of the overall system can be established using the equivalent model, and the guidance for frequency analysis and stability analysis can be provided. Theoretical derivation and simulation results verify the correctness and generality of the equivalent model.展开更多
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金financially supported by the Natural Science Foundation of Beijing (No. L182062)the Beijing Nova program (Z171100001117077)+5 种基金the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No.2014QJ02)the program for the Development of Science and Technology of Jilin Province (Nos. 20190201309JC and 20190101009JH)the Project of Development and Reform Commission of Jilin Province (No. 2019C042-1)the support from Natural Sciences and Engineering Research Council of Canada (NSERC)the University of Waterloo.
文摘Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.
基金This research was partially funded by Mining Education Australia(MEA)and OZ Minerals,Australiatheir support is gratefully acknowledged.
文摘The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slurry, which is related to CPB mixture design and the temperature underground. This paper presented an experimental study investigating the effects of binder type, content, water chemical properties and content, and temperature, on the rheological properties of CPB material prepared using the tailings of a copper mine in South Australia. Portland cement(PC), a newly released commercially manufactured cement called Minecem(MC) and fly ash(FA) were used as the binders added to the mine tailing materials. Various amounts of two different water types were added to the mixtures in the preparation of backfill material slurry. Six different temperatures ranging from 5 to 60 °C were to investigate the effect of temperature on CPB rheology. Overall, the increasing water content and decreasing temperature lead to lower yield stress. Based on the results obtained from the rheological properties of CPB slurry, it was found that at room temperature(25 °C), with regards to the unconfined compressive strength(UCS) performance, the replacement of 4% PC mixed CPB(28 days UCS 425 k Pa) to 3% MC mixed CPB(28 days UCS 519 k Pa), reduced the slurry yield stress from 210.7 to 178.5 Pa. The results also showed that the chemical composition of water affects the yield stress of CPB slurry and that MC mitigates the negative effect of mine-processed water(MW) and thus lead to improve the rheological properties of the slurry. However, the results suggested that the rheological properties of a mixture using MC is very sensitive to the water volume and temperature change. Therefore, using MC in backfill requires better quality control in slump mixing.
文摘Geotechnical stability is a major concern for the long-term safety and integrity of underground infrastructures such as tunnels, railway stations, mine shafts and hydraulic power chambers. An effective geotechnical monitoring system is able to provide adequate warning to underground personnel prior to any unexpected major geotechnical failure. This paper reviews the conventional geotechnical monitoring sensors and the emerging Fibre Optic Sensing(FOS) techniques, pointing out their unique features and major differences. Recent advances in various FOS based monitoring systems, including Brillouin time domain distributed optical sensors and fibre Bragg grating(FBG) sensors, are investigated through a critical review of the laboratory studies and field applications used for underground geotechnical monitoring. Particular emphasis is given to fibre packaging, temperature compensation, installation methods and instrumentation performance in the underground environment. A detailed discussion of the advantages and limitations of each FOS monitoring system is also presented in this paper.
基金supported by the National Natural Science Foundation of China (Nos. 21978110 and 51772126)the Natural Science Foundation of Beijing (No. L182062)+8 种基金the Organization Department of Beijing Talents Project (2018000021223ZK21)the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No. 2014QJ02)the Jilin Province Science and Technology Department Program (Nos. 20200201187JC, 20190201309JC, and 20190101009JH)the ‘‘13th five-year” Science and Technology Project of Jilin Provincial Education Department (No. JJKH20200407KJ)the Jilin Province Development and Reform Commission Program (Nos. 2020C026-3 and 2019C042-1)the Jilin Province Fund for Talent Development Program (No. [2019] 874)the supports from Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Waterloothe Waterloo Institute for Nanotechnology。
文摘The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced by the graphitic carbon nitride/carbon nanotube(g-C_3 N_4/CNT) composite toward inhibited shuttling behavior and improved battery performance.The obtained g-C_3 N_4 delivers a unique spongelike architecture with massive ion transfer pathways and fully exposed active interfaces,while the abundant C-N heteroatomic structures impose strong chemical immobilization toward lithium polysulfides.Combined with the highly conductive agent,the g-C_3 N_4/CNT reinforced separator is endowed with great capability of confining and reutilizing the active sulfur within the cathode,thus contributing to an efficient and stable sulfur electrochemistry.Benefiting from these synergistic attributes,Li-S cells based on g-C_3 N_4/CNT separator exhibit an excellent cyclability with a minimum decay rate of 0.03% per cycle over 500 cycles and decent rate capability up to 2 C.Moreover,a high areal capacity of 7.69 mAh cm^(-2)can be achieved under a raised sulfur loading up to 10.1 mg cm^(-2).demonstrating a facile and efficient pathway toward superior Li-S batteries.
文摘Hydraulic slotting in a gas drainage borehole is an effective method of enhancing gas drainage perfor- mance. However, it frequently occurs that a large amount of slotting products (mainly the coal slurry and gas) intensely spurt out of the borehole during the slotting, which adversely affects the slotting efficiency. Despite extensive previous investigations on the mechanism and prevention-device design of the spurt during ordinary borehole drilling, a very few studies has focused on the spurt in the s Ottlng pro ] " _ cess. The slotting spurt is mainly caused by two reasons: the coal and gas outburst in the borehole and the borehole deslagging blockage. This paper focuses on the second reason, and investigates the hydraulic deslagging flow patterns in the annular space between the drill pipe and borehole wall Results show that there are six deslagging flow patterns when the drill pipe is still: pure slurry flow, pure gas flow, bubble flow, intermittent flow, layering flow and annular flow. When the drill pipe rotates, each of those six flow patterns changes due to the Taylor vortex effect. Outcomes of this study could help to better understand the slotting-spurt mechanism and provide guidance on the anti-spurt strategies through eliminating the borehole deslagging blockage.
基金supported by SGCC Scientific and Technological Project(5216A018000J)National Key R&D Program of China(2016YFB0900900)
文摘The system controlled in synchronous frame is commonly used. However, it is a problem how to transform the controller in synchronous frame to stationary frame. This paper deduces the stationary frame equivalent model of arbitrarily controller in synchronous frame. The equivalent model can reflect the control performance of the input signal at different frequency accurately. The unified frequency-domain model of the overall system can be established using the equivalent model, and the guidance for frequency analysis and stability analysis can be provided. Theoretical derivation and simulation results verify the correctness and generality of the equivalent model.