The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and soci...The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.展开更多
The catalyst layer(CL)is the core component in determining the electrical-thermal-water performance and cost of proton exchange membrane fuel cell(PEMFC).Systemic analysis and rapid prediction tools are required to im...The catalyst layer(CL)is the core component in determining the electrical-thermal-water performance and cost of proton exchange membrane fuel cell(PEMFC).Systemic analysis and rapid prediction tools are required to improve the design efficiency of CL.In this study,a 3D multi-phase model integrated with the multi-level agglomerate model for CL is developed to describe the heat and mass transfer processes inside PEMFC.Moreover,a research framework combining the response surface method(RSM)and artificial neural network(ANN)model is proposed to conduct a quantitative analysis,and further a rapid and accurate prediction.With the help of this research framework,the effects of CL composition on the electrical-thermal-water performance of PEMFC are investigated.The results show that the mass of platinum,the mass of carbon,and the volume fraction of dry ionomer has a significant impact on the electrical-thermal-water performance.At the selected points,the sensitivity of the decision variables is ranked:volume fraction of dry ionomer>mass of platinum>mass of carbon>agglomerate radius.In particular,the sensitivity of the volume fraction of dry ionomer is over 50%at these points.Besides,the comparison results show that the ANN model could implement a more rapid and accurate prediction than the RSM model based on the same sample set.This in-depth study is beneficial to provide feasible guidance for high-performance CL design.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52225403,U2013603,52434004,and 52404365)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)+2 种基金the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015)the National Key Research and Development Program of China(2023YFF0615404)the Scientific Instrument Developing Project of Shenzhen University。
文摘The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.
基金financially supported by the National Key R&D Program of China (2022YFE0101300)the National Natural Science Foundation of China (52176203)。
文摘The catalyst layer(CL)is the core component in determining the electrical-thermal-water performance and cost of proton exchange membrane fuel cell(PEMFC).Systemic analysis and rapid prediction tools are required to improve the design efficiency of CL.In this study,a 3D multi-phase model integrated with the multi-level agglomerate model for CL is developed to describe the heat and mass transfer processes inside PEMFC.Moreover,a research framework combining the response surface method(RSM)and artificial neural network(ANN)model is proposed to conduct a quantitative analysis,and further a rapid and accurate prediction.With the help of this research framework,the effects of CL composition on the electrical-thermal-water performance of PEMFC are investigated.The results show that the mass of platinum,the mass of carbon,and the volume fraction of dry ionomer has a significant impact on the electrical-thermal-water performance.At the selected points,the sensitivity of the decision variables is ranked:volume fraction of dry ionomer>mass of platinum>mass of carbon>agglomerate radius.In particular,the sensitivity of the volume fraction of dry ionomer is over 50%at these points.Besides,the comparison results show that the ANN model could implement a more rapid and accurate prediction than the RSM model based on the same sample set.This in-depth study is beneficial to provide feasible guidance for high-performance CL design.