期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Rationally designing electrolyte additives for highly improving cyclability of LiNi_(0.5)Mn_(1.5)O_(4)/Graphite cells 被引量:2
1
作者 Zhiyong Xia Kuan Zhou +8 位作者 Xiaoyan lin Zhangyating Xie Qiurong Chen xiaoqing li Jie Cai Suli li Hai Wang Mengqing Xu Weishan li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期266-275,共10页
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo... High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries. 展开更多
关键词 Electrolyte additive Design and synthesis CYCLABILITY High voltage batteries Cathode and anode interphases
在线阅读 下载PDF
Antibacterial mechanism of kojic acid and tea polyphenols against Escherichia coli O157:H7 through transcriptomic analysis 被引量:1
2
作者 Yilin lin Ruifei Wang +4 位作者 xiaoqing li Keren Agyekumwaa Addo Meimei Fang Yehui Zhang Yigang Yu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期736-747,共12页
Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag... Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry. 展开更多
关键词 Kojic acid Tea polyphenols Antibacterial mechanism Escherichia coli O157:H7 RNA-SEQ
在线阅读 下载PDF
Boosting Chemodynamic Therapy by the Synergistic Effect of Co‑Catalyze and Photothermal Effect Triggered by the Second Near‑Infrared Light 被引量:5
3
作者 Songtao Zhang Longhai Jin +10 位作者 Jianhua liu Yang liu Tianqi Zhang Ying Zhao Na Yin Rui Niu xiaoqing li Dongzhi Xue Shuyan Song Yinghui Wang Hongjie Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期318-330,共13页
In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction(i.e.,chemodynamic therapy,CDT)has been attracted more attentions in recent years,the limited Fenton reaction efficiency is the... In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction(i.e.,chemodynamic therapy,CDT)has been attracted more attentions in recent years,the limited Fenton reaction efficiency is the important obstacle to further application in clinic.Herein,we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin(FeO/MoS2-BSA)with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared(NIR II)light.In the tumor microenvironments,the MoS2 nanosheets not only can accelerate the conversion of Fe3+ions to Fe2+ions by Mo4+ions on their surface to improve Fenton reaction efficiency,but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy(PTT).Consequently,benefiting from the synergetic-enhanced CDT/PTT,the tumors are eradicated completely in vivo.This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT. 展开更多
关键词 Chemodynamic therapy Fenton reaction CO-CATALYSIS Photothermal effect NIR II biowindows
在线阅读 下载PDF
Synergistic interphase modification with dual electrolyte additives to boost cycle stability of high nickel cathode for all-climate battery 被引量:1
4
作者 Zhangyating Xie Jiarong He +9 位作者 Zhiyong Xia Qinqin Cai Ziyuan Tang Jie Cai Yili Chen xiaoqing li Yingzhu Fan lidan Xing Yanbin Shen Weishan li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期197-207,I0005,共12页
B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)t... B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)to facilitate the rapid Li+migration.Nevertheless,its wide-temperature application has been limited by the instability of B-derived CEI layer at high temperature.Herein,dual electrolyte additives,consisting of lithium tetraborate(Li_(2)TB)and 2,4-difluorobiphenyl(FBP),are proposed to boost the widetemperature performances of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)cathode.Theoretical calculation and electrochemical performances analyses indicate that Li_(2)TB and FBP undergo successive decomposition to form a unique dual-layer CEI.FBP acts as a synergistic filming additive to Li_(2)TB,enhancing the hightemperature performance of NCM cathode while preserving the excellent low-temperature cycle stability and the superior rate capability conferred by Li_(2)TB additive.Therefore,the capacity retention of NCM‖Li cells using optimal FBP-Li_(2)TB dual electrolyte additives increases to 100%after 200 cycles at-10℃,99%after 200 cycles at 25℃,and 83%after 100 cycles at 55℃,respectively,much superior to that of base electrolyte(63%/69%/45%).More surprisingly,galvanostatic c ha rge/discharge experiments at different temperatures reveal that NCM‖Li cells using FBP-Li_(2)TB additives can operate at temperatures ranging from-40℃to 60℃.This synergistic interphase modification utilizing dual electrolyte additives to construct a unique dual-layer CEI adaptive to a wide temperature range,provides valuable insights to the practical applications of NCM cathodes for all-climate batteries. 展开更多
关键词 Nickel-rich cathode Dual electrolyte additives Lithium-ion batteries Wide temperature application Cathode electrolyte interphase
在线阅读 下载PDF
Deep sequencing of Magnoliae officinalis reveals upstream genes related to the lignan biosynthetic pathway
5
作者 Xiaodong Shi Langsheng Yang +5 位作者 Jihai Gao Yuzhen Sheng xiaoqing li Yunjie Gu Guoqing Zhuang Fang Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第4期671-681,共11页
Magnoliae officinalis is the plant source of houpo, a widely used traditional Chinese medicine to treat symptoms of gastrointestinal diseases. Its main active components, magnolol (MG) and honokiol (HK), have excellen... Magnoliae officinalis is the plant source of houpo, a widely used traditional Chinese medicine to treat symptoms of gastrointestinal diseases. Its main active components, magnolol (MG) and honokiol (HK), have excellent pharmacological actions, but little research has focused on the functional genes involved in the MG and HK metabolic pathways. In this study, using RNA-seq and gene expression profile, we present the first transcriptome characterization of M. officinalis leaves, twigs and stems. Based on similarity search against nonredundant protein databases, 30,660 contigs had at least a significant alignment to existing public database. Pathway analysis showed that 8707 contigs were assigned to 317 KEGG pathways. A second skeleton pathway with 14 putative homologous genes was also identified as involved in lignan biosynthesis. Expression profiles of these 14 genes showed that leaves and twigs seem to have higher transcript levels for lignan components than in stem tissue; this result was then verified by qRT-PCR. Our work will immensely facilitate metabolic research on lignan biosynthesis in M. officinalis. 展开更多
关键词 HONOKIOL Lignan pathway Magnoliae officinalis MAGNOLOL TRANSCRIPTOME
在线阅读 下载PDF
Probing conformational change of T7 RNA polymerase and DNA complex by solid-state nanopores
6
作者 Xm Tong Rui Hu +1 位作者 xiaoqing li Qing Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期659-664,共6页
Proteins are crucial to most biological processes, such as enzymes, and in various catalytic processes a dynamic motion is required. The dynamics of protein are embodied as a conformational change, which is closely re... Proteins are crucial to most biological processes, such as enzymes, and in various catalytic processes a dynamic motion is required. The dynamics of protein are embodied as a conformational change, which is closely related to the flexibility of protein. Recently, nanopore sensors have become accepted as a low cost and high throughput method to study the features of proteins. In this article, we used a SiN nanopore device to study the flexibility of T7 RNA polymerase(RNAP) and its complex with DNA promoter. By calculating full-width at half-maximum(FWHM) of Gaussian fits to the blockade histograms, we found that T7 RNAP becomes more flexible after binding DNA promoter. Moreover, the distribution of fractional current blockade suggests that flexibility alters due to a breath-like change of the volume. 展开更多
关键词 solid-state nanopore T7 RNA polymerase conformational change protein flexibility
在线阅读 下载PDF
Pt@Au/Al2O3核壳纳米粒子的制备和表征及其在催化氧化甲苯中的应用(英文) 被引量:2
7
作者 张超 李思汉 +2 位作者 吴辰亮 李小青 严新焕 《物理化学学报》 SCIE CAS CSCD 北大核心 2020年第8期63-71,共9页
采用种子生长法,在不存在保护剂和结构导向剂的情况下,成功制备Pt@Au核壳结构纳米颗粒,即在Pt纳米颗粒表面,Au Cl4-被H2还原成Au(0),并沉积在Pt核纳米颗粒上。通过透射电子显微镜(TEM),能量色散X射线光谱(EDS),高分辨率TEM (HRTEM),傅... 采用种子生长法,在不存在保护剂和结构导向剂的情况下,成功制备Pt@Au核壳结构纳米颗粒,即在Pt纳米颗粒表面,Au Cl4-被H2还原成Au(0),并沉积在Pt核纳米颗粒上。通过透射电子显微镜(TEM),能量色散X射线光谱(EDS),高分辨率TEM (HRTEM),傅里叶变换(FFT)和X射线粉末衍射(XRD),X射线光电子能谱(XPS),红外光谱(IR)和H2-程序升温还原(H2-TPR)等表征证实了核壳结构。所制得的Pt@Aux/Al2O3催化剂在常压下由固定床反应器测定其在甲苯氧化中的活性。相比于单金属催化剂Pt/Al2O3与Au/Al2O3,Pt@Aux/Al2O3核壳催化剂显示出更高的催化活性,且Pt1@Au1/Al2O3对于甲苯氧化具有最好的催化活性,这归因于Au和Pt之间的电子交换促进了Au上活性氧的形成。Pt@Aux/Al2O3对甲苯氧化良好的催化性能和高选择性与其较高的吸附氧物质浓度,较好的低温还原性和强相互作用有关。 展开更多
关键词 催化剂 协同作用 纳米材料 核壳结构 VOCS
在线阅读 下载PDF
Deep Learning-Based Prediction of Traffic Accidents Risk for Internet of Vehicles
8
作者 Haitao Zhao xiaoqing li +3 位作者 Huiling Cheng Jun Zhang Qin Wang Hongbo Zhu 《China Communications》 SCIE CSCD 2022年第2期214-224,共11页
With the increasing number of vehicles,traffic accidents pose a great threat to human lives.Hence,aiming at reducing the occurrence of traffic accidents,this paper proposes an algorithm based on a deep convolutional n... With the increasing number of vehicles,traffic accidents pose a great threat to human lives.Hence,aiming at reducing the occurrence of traffic accidents,this paper proposes an algorithm based on a deep convolutional neural network and a random forest to predict accident risks.Specifically,the proposed algorithm includes a feature extractor and a feature classifier,where the former extracts key features using a convolutional neural network and the latter outputs a probability value of traffic accidents using a random forest with multiple decision trees,which indicates the degree of accident risks.Simulations show that the proposed algorithm can achieve higher performance in terms of the Area Under the Curve(AUC)of the Receiver Characteristic Operator as well as accuracy than the existing algorithms based on the Adaboost or the pure convolutional neural networks. 展开更多
关键词 road safety risk prediction Internet of Vehicles
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部