期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode:From O3-Type to O2-Type Structural Design 被引量:1
1
作者 Guohua zhang Xiaohui Wen +2 位作者 Yuheng Gao renyuan zhang Yunhui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期81-102,共22页
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H... Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed. 展开更多
关键词 Lithium-ion batteries Li-rich layered oxide Voltage decay Migration of transition metal ions O2-type structural design
在线阅读 下载PDF
Modulating the zinc ion flux and electric field intensity by multifunctional metal-organic complex interface layer for highly stable Zn anode
2
作者 Yuan Liu Lijun Wu +8 位作者 Ping zhang Yuexin Liu Jinpeng Wu Shunyu Yao Lei Wang Shiwen Gong Guidong Ju Zhicheng Yuan renyuan zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期375-383,共9页
The uncontrollable growth of Zn dendrites accompanied by side reactions severely impedes the industrialized process of zinc ion electrochemical energy storage devices.Herein,we propose a practical metalorganic complex... The uncontrollable growth of Zn dendrites accompanied by side reactions severely impedes the industrialized process of zinc ion electrochemical energy storage devices.Herein,we propose a practical metalorganic complex interface layer to manipulate the zinc ion flux and electric field intensity,enabling highly homogeneous zinc electrodeposition.The zinc-terephthalic acid complex(ZnPTA)with lower adsorption energy for zinc ion(-1.3 eV)builds a zincophilic interface favoring the ordered nucleation and growth of Zn.Moreover,the ZnPTA layer can serve as physical barrier to protect the newly deposited Zn from corrosion in the aqueous electrolyte.The modified Zn anode with the ZnPTA layer(ZnPTA@Zn)demonstrates excellent cycling stability more than 3000 h at 1 mA/cm^(2).Besides,the zinc-ion battery and zinc-ion hybrid capacitor using the ZnPTA@Zn electrode deliver outstanding cycle performance(up to 5500 cycles with high residual capacity ratio of 77.9%).This work provides a promising metal-organic complex interface design on enhancing the performance of Zn metal anode. 展开更多
关键词 Metal-organic complex Artificial interface layer Zn anode Aqueous Zn-ion battery Aqueous Zn-ion hybrid capacitor
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部