The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple ...The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genornic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system.展开更多
In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The co...In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.展开更多
Scheduling schemes assign limited resources to appropriate users,which are critical for wireless network performance.Most current schemes have been designed based on saturated traffic,i.e.,assuming users in networks a...Scheduling schemes assign limited resources to appropriate users,which are critical for wireless network performance.Most current schemes have been designed based on saturated traffic,i.e.,assuming users in networks always have data to transmit.However,the user buffer may sometimes be empty in actual network.Therefore,these algorithms will allocate resources to users having no data to transmit,which results in resource waste.In view of this,we propose new scheduling schemes for onehop and two-hop link scenario with unsaturated traffic.Furthermore,this paper analyzes their key network performance indicators,including the average queue length,average throughput,average delay and outage probability.The two scheduling algorithms avoid scheduling the links whose buffers are empty and thus improve the network resource utilization.For the one-hop link scenario,network provides differentiated services via adjusting the scheduling probabilities of the destination nodes(DNs)with different priorities.Among the DNs with same priority,the node with higher data arrival rate has larger scheduling probability.For the two-hop link scenario,we prioritize the scheduling of relay-to-destination(R-D)link and dynamically adjust the transmission probability of source-to-relay(S-R)link,according to the length of remaining buffer.The experiment results show the effectiveness and advantage of the proposed algorithms.展开更多
Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the star...Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the starting materials for the synthesis of LDHs.Here,we report a novel synthesis route for Mg/Al-LDH by using inexpensive basic magnesium carbonate as the starting material.X-ray diffraction(XRD)and solid-state nuclear magnetic resonance(ssNMR)data show that LDHs with rich defects are formed rapidly at room temperature and good crystallinity can be obtained after further hydrothermal treatment.These results provide a simple,rapid and green preparation method for LDHs.展开更多
基金The researches described in this article were partially supported by grants from the National Natural Science Foundation of China (No. 81570271 and 81400357) and NIH (UL1 RR024996). We are very grateful to John R Lee (Assistant Professor of Medicine, Weill Comell Medical College, New York), and Jeff J Zhu (Research Manager, Weill Comell Medical College, New York) for critical review of the article. The authors have nothing to disclosure.
文摘The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genornic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system.
基金supported by the National Key R&D Program of China(2018YFB1501001)the NSF of China(11771348)China Postdoctoral Science Foundation(2019M653579)。
文摘In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.
基金This work was supported in part by the Natural Science Foundation of China under Grant 61725103,Grant 91638202,Grant 61801361 and Grant U19B2025,and was supported by“the Fundamental Research Funds for the Central Universities”.
文摘Scheduling schemes assign limited resources to appropriate users,which are critical for wireless network performance.Most current schemes have been designed based on saturated traffic,i.e.,assuming users in networks always have data to transmit.However,the user buffer may sometimes be empty in actual network.Therefore,these algorithms will allocate resources to users having no data to transmit,which results in resource waste.In view of this,we propose new scheduling schemes for onehop and two-hop link scenario with unsaturated traffic.Furthermore,this paper analyzes their key network performance indicators,including the average queue length,average throughput,average delay and outage probability.The two scheduling algorithms avoid scheduling the links whose buffers are empty and thus improve the network resource utilization.For the one-hop link scenario,network provides differentiated services via adjusting the scheduling probabilities of the destination nodes(DNs)with different priorities.Among the DNs with same priority,the node with higher data arrival rate has larger scheduling probability.For the two-hop link scenario,we prioritize the scheduling of relay-to-destination(R-D)link and dynamically adjust the transmission probability of source-to-relay(S-R)link,according to the length of remaining buffer.The experiment results show the effectiveness and advantage of the proposed algorithms.
基金supported by National Key R&D Program of China(2021YFA1502803)the National Natural Science Foundation of China(NSFC)(21972066 and 91745202)+3 种基金NSFC-Royal Society Joint Program(21661130149)Luming Peng thanks the Royal Society and Newton Fund for a Royal Society-Newton Advanced Fellowshipsupported by the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling,Nanjing Universitya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the starting materials for the synthesis of LDHs.Here,we report a novel synthesis route for Mg/Al-LDH by using inexpensive basic magnesium carbonate as the starting material.X-ray diffraction(XRD)and solid-state nuclear magnetic resonance(ssNMR)data show that LDHs with rich defects are formed rapidly at room temperature and good crystallinity can be obtained after further hydrothermal treatment.These results provide a simple,rapid and green preparation method for LDHs.