Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important ...Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important to understand the mechanism of how the dopants regulate the electronic band,lattice parameter adjusting,or hetero-phase formation to achieve high stability.In this study,we investigate LiNi_(0.9)Mn_(0.1)O_(2)cathodes doped with IVB grouping elements via multiple characterization techniques.By utilizing in situ XRD and TEM methods,we found that the stronger Ti-O bond effectively improves the cathode stability via a dual protection mechanism.Specifically,the bulk lattice of cathode is wellpreserved during cycling as a result of the suppressed H_(2)-H_(3)phase transition,while a in situ formed Ti-rich surface layer can prevent continuous surface degradation.As a result,the 5%Ti doped LiNi_(0.9)Mn_(0.1)O_(2)cathode exhibits a high capacity retention of 96%after 100 cycles.Whereas,despite IVB group elements Zr and Hf have stronger bonding energy with oxygen,their larger ionic radii actually impede their diffusion into the cathode,thereby they can not improve the cycling stability.Our findings uncover the functional origin of doped elements with their dynamic modification on cathode structure,providing mechanistic insights into the design of nickel-rich cobalt-free cathodes.展开更多
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金the funding support from the National Key Research and Development Program of China(2020YFB2007400)the National Natural Science Foundation of China(22209202,22075317)the Strategic Priority Research Program(B)(XDB33030200)of Chinese Academy of Sciences。
文摘Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important to understand the mechanism of how the dopants regulate the electronic band,lattice parameter adjusting,or hetero-phase formation to achieve high stability.In this study,we investigate LiNi_(0.9)Mn_(0.1)O_(2)cathodes doped with IVB grouping elements via multiple characterization techniques.By utilizing in situ XRD and TEM methods,we found that the stronger Ti-O bond effectively improves the cathode stability via a dual protection mechanism.Specifically,the bulk lattice of cathode is wellpreserved during cycling as a result of the suppressed H_(2)-H_(3)phase transition,while a in situ formed Ti-rich surface layer can prevent continuous surface degradation.As a result,the 5%Ti doped LiNi_(0.9)Mn_(0.1)O_(2)cathode exhibits a high capacity retention of 96%after 100 cycles.Whereas,despite IVB group elements Zr and Hf have stronger bonding energy with oxygen,their larger ionic radii actually impede their diffusion into the cathode,thereby they can not improve the cycling stability.Our findings uncover the functional origin of doped elements with their dynamic modification on cathode structure,providing mechanistic insights into the design of nickel-rich cobalt-free cathodes.