Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ...Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA.展开更多
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging des...The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.展开更多
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s...For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.展开更多
The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechar...The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechargeable ZIBs possess merits of high security,low cost,environmental friendliness,and competitive performance,and they are received a lot of attention.However,the development of suitable zinc ion intercalation-type cathode materials is still a big challenge,resulting in failing to meet the commercial needs of ZIBs.Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes.The valence state of vanadium is+2~+5,which can realize multi-electron transfer in the redox reaction and has a high specific capacity.Most of the manganese-based compounds have tunnel structure or three-dimensional space frame,with enough space to accommodate zinc ions.In order to understand the energy storage mechanism and electrochemical performance of these two materials,a specialized review focusing on state-of-the-art developments is needed.This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs.The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted.This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs.展开更多
Soil organic carbon (SOC) is an effective indicator of soil fertility and productivity, and it varies spatially and temporally in relation to other soil properties. Spatial variability of SOC in the forestlands of n...Soil organic carbon (SOC) is an effective indicator of soil fertility and productivity, and it varies spatially and temporally in relation to other soil properties. Spatial variability of SOC in the forestlands of northeast China was characterized using geostatistics. Soil samples at the depths of 0-20 era, 20-40 cm and 40-60 cm were collected from six- ty-three temporary plots to evaluate SOC concentration and density (SOCD) and other soil properties. We analyzed correlations between SOC and soil properties. Soil organic carbon concentrations were high. The total amount of C stored in soil (0-60 cm) was 16.23 kg·m-2 with the highest SOCD of 7.98 kg·m-2 in topsoil. Soil properties in most cases differed by horizon, suggesting different processes and effects in each horizon. Soil organic carbon had positive relationships with total N, P and K as well as readily available K, but did not show a significant posi- tive correlation with available P. Spatial factors including elevation, slope and aspect affected SOC distribution. Soil organic carbon at 0-60 cm had strong spatial autocorrelation with nugget/sill ratio of 5.7%, and moderate structured dependence was found at 0-20 cm, which indicated the existence of a highly developed spatial structure. Spatial distributionsof SOC concentration and SOCD were estimated using regres- sion-kriging, with higher prediction accuracy than ordinary kriging. The fractal dimension of SOC indicated the preferential pattern of SOC dis- tribution, with the greatest spatial heterogeneity and strongest spatial dependence in the northeast-southwest direction.展开更多
Soil organic carbon(SOC)mineralization is closely related to carbon source or sink of terrestrial ecosystem.Natural stands of Larix olgensis on the Jincang forest farm,Jilin Province were selected to investigate the d...Soil organic carbon(SOC)mineralization is closely related to carbon source or sink of terrestrial ecosystem.Natural stands of Larix olgensis on the Jincang forest farm,Jilin Province were selected to investigate the dynamics of SOC mineralization and its correlations with other soil properties in a young forest and mid-aged forest at soil depths of 0–10,>10–20,>20–40 and>40–60 cm.The results showed that compared with a mid-aged forest,the SOC stock in the young forest was 32%higher.Potentially mineralizable soil carbon(C0)in the young forest was 1.1–2.5 g kg^-1,accounting for 5.5–8.1%of total SOC during the 105 days incubation period and 0.3–1.5 g kg^-1 in the mid-aged forest at different soil depths,occupying 2.8–3.4%of total SOC.There was a significant difference in C0 among the soil depths.The dynamics of the SOC mineralization was a good fit to a three-pool(labile,intermediate and stable)carbon decomposition kinetic model.The SOC decomposition rate for different stand ages and different soil depths reached high levels for the first 15 days.Correlation analysis revealed that the C0 was significantly positively related with SOC content,soil total N(TN)and readily available K(AK)concentration.The labile soil carbon pool was significantly related to SOC and TN concentration,and significantly negatively correlated with soil bulk density.The intermediate carbon pool was positively associated with TN and AK.The stable carbon pool had negative correlations with SOC,TN and AK.展开更多
Highly efficient and non-precious catalysts are imperative for oxygen reduction reaction(ORR) to replace Pt/C. Anchoring efficient active species to carbon supports is a promising and scalable strategy. Here we synt...Highly efficient and non-precious catalysts are imperative for oxygen reduction reaction(ORR) to replace Pt/C. Anchoring efficient active species to carbon supports is a promising and scalable strategy. Here we synthesize Cu nanoparticles and noncrystalline CuNxCy species co-decorated ketjenblack(KB) carbon catalyst(denoted as Cu-N-KB-acid) by a facile and scalable method using copper sulfate, melamine, and KB as raw materials. An initial one-pot hydrothermal treatment is designed before pyrolysis process to achieve the good distribution of Cu and melamine on KB via a possible chelation effect. Owing to the synergistic effect of Cu and CuNxCy on KB, this composite catalyst displays excellent ORR catalytic activity in alkaline solution, which is comparable to the commercial 20% Pt/C. When used as a catalyst in a home-made Al-air battery, it shows a stable discharge voltage of 1.47 V at a discharge density of 50 mA cm-2, a little higher than that of Pt/C(1.45 V).展开更多
Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micr...Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micropore structure have been synthesized by a facile two-step method,which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process.During the preparation,zinc chloride(ZnCl2)was utilized as a catalyst to promote polymerization and provide a hypersaline environment.In addition,the morphology,defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2.The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt%Pt/C catalysts,of which the half-wave potential reached 0.844 V vs.RHE.When applied in the Zn-air batteries as cathode catalysts,N-CS-1 showed a maximum power density of 175 mW cm^(-2) and long-term discharging stability of over 150 h at 10 mA cm^(-2),which outperformed 20 wt%Pt/C.The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g1 and rich micropore channels structure.Meanwhile,this work provides an efficient method to synthesize an ultrahigh surface porous carbon material,especially for catalyst application.展开更多
Supercapacitors(SCs)are emerging as efficient energy storage devices but still suffering from limited energy density compared with batteries.Electrolytes have been regarded as the key to determine the energy storage p...Supercapacitors(SCs)are emerging as efficient energy storage devices but still suffering from limited energy density compared with batteries.Electrolytes have been regarded as the key to determine the energy storage performance of SCs.However,none of the conventional electrolytes can fully meet the increasing requirements of SCs in terms of high ion conductivity,excellent stability,wide voltage window and operating temperature range,as well as environmentally friend concerns.To this end,hybrid electrolytes have sprung up in recent years,which are believed to be the candidate to solve these shortcomings.Herein,the state-of-the-art types of hybrid electrolytes for SCs,including the combination of aqueous and organic,aqueous and gel polymer,ionic liquids(ILs)and organic,and ILs and gel polymer hybrid electrolytes,are reviewed.The effects of different hybrid systems on the performance of SCs and the underlying mechanisms are among the focal points of the review,and prospects and possible directions are discussed as well to provide further insight into the future development of this field.展开更多
The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design...The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design of expanded graphite cohered by N,B bridge-doping carbon patches(NBEG)for efficient K-ion adsorption/diffusion and long-term durability.It is the B co-doping that plays a crucial role in maximizing doping-site utilization of N atoms,balancing the adsorption-diffusion kinetics,and promoting the charge transfer between NBEG and K ions.Especially,the robust lamellar structure,suitable interlayer distance,and rich active sites of the designed NBEG favor the rapid ion/electron transfer pathways and high K-ion storage capacity.Consequently,even at a low N,B doping concentration(4.36 at%,2.07 at%),NBEG anode shows prominent electrochemical performance for KIBs,surpassing most of the advanced carbon-based anodes.Kinetic studies,density functional theory simulations,and in-situ Raman spectroscopy are further performed to reveal the K-ion storage mechanism and confirm the critical actions of co-doping B.This work offers the new methods for graphite-electrode design and the deeper insights into their energy storage mechanisms in KIBs.展开更多
Critically discuss in relation to the infuence of ‘new urbanism’ on popular debates surrounding contemporary planning policy and practice,more generally,for planning theory.Introduction This essay will talk about go...Critically discuss in relation to the infuence of ‘new urbanism’ on popular debates surrounding contemporary planning policy and practice,more generally,for planning theory.Introduction This essay will talk about good places in relation to the design theory of ‘New Urbanism’.It will consider how policy may have been influenced by展开更多
基金National Natural Science Foundation of China(22272150,22302177)Major Program of Zhejiang Provincial Natural Science Foundation of China(LD22B030002)+2 种基金Zhejiang Provincial Ten Thousand Talent Program(2021R51009)Public Technology Application Project of Jinhua City(2022-4-067)Self Designed Scientific Research of Zhejiang Normal University(2021ZS0604)。
文摘Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA.
基金financially supported by the National Natural Science Foundation of China(51503178,52202048,52027801)National Key R&D Program of China(2017YFA0206301)+1 种基金China-Germany Collaboration Project(M-0199)Natural Science Foundation of Hebei Province(B2021203012,E2022203082)。
文摘The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
基金supported in part by the National Natural Science Foundation of China under Grand No.61871129 and No.61301179Projects of Science and Technology Plan Guangdong Province under Grand No.2014A010101284
文摘For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.
基金financially supported by the National Natural Science Foundation of China(No.51872090,51772097)the Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433,E2017209079)the financial support from Hunan Provincial Science and Technology Plan Project of China(No.2016TP1007,2017TP1001,and 2018RS3009)。
文摘The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechargeable ZIBs possess merits of high security,low cost,environmental friendliness,and competitive performance,and they are received a lot of attention.However,the development of suitable zinc ion intercalation-type cathode materials is still a big challenge,resulting in failing to meet the commercial needs of ZIBs.Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes.The valence state of vanadium is+2~+5,which can realize multi-electron transfer in the redox reaction and has a high specific capacity.Most of the manganese-based compounds have tunnel structure or three-dimensional space frame,with enough space to accommodate zinc ions.In order to understand the energy storage mechanism and electrochemical performance of these two materials,a specialized review focusing on state-of-the-art developments is needed.This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs.The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted.This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs.
基金supported by Natural ScienceFoundation of China(No.31270697)the Fundamental Research Fundsfor the Central Universities(TD2011-2)+1 种基金State Forestry Administrative public service sector project"Key management techniques for the health of typical forest types in China"(20100400201)National‘973’project"Soil carbon stock and its temporal and spatial distribution pattern in natural forests"(2011CB403201)
文摘Soil organic carbon (SOC) is an effective indicator of soil fertility and productivity, and it varies spatially and temporally in relation to other soil properties. Spatial variability of SOC in the forestlands of northeast China was characterized using geostatistics. Soil samples at the depths of 0-20 era, 20-40 cm and 40-60 cm were collected from six- ty-three temporary plots to evaluate SOC concentration and density (SOCD) and other soil properties. We analyzed correlations between SOC and soil properties. Soil organic carbon concentrations were high. The total amount of C stored in soil (0-60 cm) was 16.23 kg·m-2 with the highest SOCD of 7.98 kg·m-2 in topsoil. Soil properties in most cases differed by horizon, suggesting different processes and effects in each horizon. Soil organic carbon had positive relationships with total N, P and K as well as readily available K, but did not show a significant posi- tive correlation with available P. Spatial factors including elevation, slope and aspect affected SOC distribution. Soil organic carbon at 0-60 cm had strong spatial autocorrelation with nugget/sill ratio of 5.7%, and moderate structured dependence was found at 0-20 cm, which indicated the existence of a highly developed spatial structure. Spatial distributionsof SOC concentration and SOCD were estimated using regres- sion-kriging, with higher prediction accuracy than ordinary kriging. The fractal dimension of SOC indicated the preferential pattern of SOC dis- tribution, with the greatest spatial heterogeneity and strongest spatial dependence in the northeast-southwest direction.
基金jointly supported by National Key R&D Program of China(Grant No.2017YFC0504002)Natural Science Foundation of China(No.31270679)
文摘Soil organic carbon(SOC)mineralization is closely related to carbon source or sink of terrestrial ecosystem.Natural stands of Larix olgensis on the Jincang forest farm,Jilin Province were selected to investigate the dynamics of SOC mineralization and its correlations with other soil properties in a young forest and mid-aged forest at soil depths of 0–10,>10–20,>20–40 and>40–60 cm.The results showed that compared with a mid-aged forest,the SOC stock in the young forest was 32%higher.Potentially mineralizable soil carbon(C0)in the young forest was 1.1–2.5 g kg^-1,accounting for 5.5–8.1%of total SOC during the 105 days incubation period and 0.3–1.5 g kg^-1 in the mid-aged forest at different soil depths,occupying 2.8–3.4%of total SOC.There was a significant difference in C0 among the soil depths.The dynamics of the SOC mineralization was a good fit to a three-pool(labile,intermediate and stable)carbon decomposition kinetic model.The SOC decomposition rate for different stand ages and different soil depths reached high levels for the first 15 days.Correlation analysis revealed that the C0 was significantly positively related with SOC content,soil total N(TN)and readily available K(AK)concentration.The labile soil carbon pool was significantly related to SOC and TN concentration,and significantly negatively correlated with soil bulk density.The intermediate carbon pool was positively associated with TN and AK.The stable carbon pool had negative correlations with SOC,TN and AK.
基金supported by the National Natural Science Foundation of China (nos. 21671200 and 21571189)Fujian Provincial Natural Science Foundation of China (no. 2015J01072)+1 种基金the Hunan Provincial Science and Technology Plan Project, China (no. 2016TP1007)Innovation-Driven Project of Central South University (no. 2016CXS009)
文摘Highly efficient and non-precious catalysts are imperative for oxygen reduction reaction(ORR) to replace Pt/C. Anchoring efficient active species to carbon supports is a promising and scalable strategy. Here we synthesize Cu nanoparticles and noncrystalline CuNxCy species co-decorated ketjenblack(KB) carbon catalyst(denoted as Cu-N-KB-acid) by a facile and scalable method using copper sulfate, melamine, and KB as raw materials. An initial one-pot hydrothermal treatment is designed before pyrolysis process to achieve the good distribution of Cu and melamine on KB via a possible chelation effect. Owing to the synergistic effect of Cu and CuNxCy on KB, this composite catalyst displays excellent ORR catalytic activity in alkaline solution, which is comparable to the commercial 20% Pt/C. When used as a catalyst in a home-made Al-air battery, it shows a stable discharge voltage of 1.47 V at a discharge density of 50 mA cm-2, a little higher than that of Pt/C(1.45 V).
基金financially supported by the National Key R&D Program of China (No. 2018YFB0104000 and No. 2019YFA0210300)National Nature Science Foundation of China (No.21571189 and No.21671200)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Hunan Provincial Science and Technology Plan Project of China (No. 2019GK2033, No. 2017TP1001, CPS2019K06 and No. 2018RS3009)Postdoctoral International Exchange Program Funding of China (No. [2018]115)China Postdoctoral Science Foundation (2019M652802)
文摘Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micropore structure have been synthesized by a facile two-step method,which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process.During the preparation,zinc chloride(ZnCl2)was utilized as a catalyst to promote polymerization and provide a hypersaline environment.In addition,the morphology,defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2.The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt%Pt/C catalysts,of which the half-wave potential reached 0.844 V vs.RHE.When applied in the Zn-air batteries as cathode catalysts,N-CS-1 showed a maximum power density of 175 mW cm^(-2) and long-term discharging stability of over 150 h at 10 mA cm^(-2),which outperformed 20 wt%Pt/C.The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g1 and rich micropore channels structure.Meanwhile,this work provides an efficient method to synthesize an ultrahigh surface porous carbon material,especially for catalyst application.
基金financial support from the National Natural Science Foundation of China(21671173)Zhejiang Provincial Ten Thousand Talent Program(2017R52043)。
文摘Supercapacitors(SCs)are emerging as efficient energy storage devices but still suffering from limited energy density compared with batteries.Electrolytes have been regarded as the key to determine the energy storage performance of SCs.However,none of the conventional electrolytes can fully meet the increasing requirements of SCs in terms of high ion conductivity,excellent stability,wide voltage window and operating temperature range,as well as environmentally friend concerns.To this end,hybrid electrolytes have sprung up in recent years,which are believed to be the candidate to solve these shortcomings.Herein,the state-of-the-art types of hybrid electrolytes for SCs,including the combination of aqueous and organic,aqueous and gel polymer,ionic liquids(ILs)and organic,and ILs and gel polymer hybrid electrolytes,are reviewed.The effects of different hybrid systems on the performance of SCs and the underlying mechanisms are among the focal points of the review,and prospects and possible directions are discussed as well to provide further insight into the future development of this field.
基金supported by the National Natural Science Foundation of China(21573059 and U1704251)the Overseas Expertise Introduction Project for Discipline Innovation(D17007)the Natural Science Foundation of Henan Province(212300410178)。
文摘The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design of expanded graphite cohered by N,B bridge-doping carbon patches(NBEG)for efficient K-ion adsorption/diffusion and long-term durability.It is the B co-doping that plays a crucial role in maximizing doping-site utilization of N atoms,balancing the adsorption-diffusion kinetics,and promoting the charge transfer between NBEG and K ions.Especially,the robust lamellar structure,suitable interlayer distance,and rich active sites of the designed NBEG favor the rapid ion/electron transfer pathways and high K-ion storage capacity.Consequently,even at a low N,B doping concentration(4.36 at%,2.07 at%),NBEG anode shows prominent electrochemical performance for KIBs,surpassing most of the advanced carbon-based anodes.Kinetic studies,density functional theory simulations,and in-situ Raman spectroscopy are further performed to reveal the K-ion storage mechanism and confirm the critical actions of co-doping B.This work offers the new methods for graphite-electrode design and the deeper insights into their energy storage mechanisms in KIBs.
文摘Critically discuss in relation to the infuence of ‘new urbanism’ on popular debates surrounding contemporary planning policy and practice,more generally,for planning theory.Introduction This essay will talk about good places in relation to the design theory of ‘New Urbanism’.It will consider how policy may have been influenced by