采用水热法成功制备了不同掺杂浓度的Zn1-2x Fe x Ni x O(x=0,0.025,0.05,0.1)稀磁半导体材料,利用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线能量色散分析仪(XEDS)对样品进行表征,并结合拉曼(Raman)光谱、光致发光光谱(PL)和振动样...采用水热法成功制备了不同掺杂浓度的Zn1-2x Fe x Ni x O(x=0,0.025,0.05,0.1)稀磁半导体材料,利用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线能量色散分析仪(XEDS)对样品进行表征,并结合拉曼(Raman)光谱、光致发光光谱(PL)和振动样品磁强计(VSM)研究样品的光学性能和磁学性能。结果表明,水热法制备的样品具有结晶性良好的纤锌矿结构,没有杂峰出现,形貌为纳米棒状结构,分散性良好。Fe2+、Ni2+是以替代的形式进入ZnO晶格中,Fe和Ni的掺杂使得晶体中的缺陷和应力增加,拉曼光谱峰位发生红移,光致发光光谱发生猝灭现象。另外,共掺杂样品在室温条件下存在明显的铁磁性,饱和磁化强度随着掺杂量的增加而增强。展开更多
文摘采用水热法成功制备了不同掺杂浓度的Zn1-2x Fe x Ni x O(x=0,0.025,0.05,0.1)稀磁半导体材料,利用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线能量色散分析仪(XEDS)对样品进行表征,并结合拉曼(Raman)光谱、光致发光光谱(PL)和振动样品磁强计(VSM)研究样品的光学性能和磁学性能。结果表明,水热法制备的样品具有结晶性良好的纤锌矿结构,没有杂峰出现,形貌为纳米棒状结构,分散性良好。Fe2+、Ni2+是以替代的形式进入ZnO晶格中,Fe和Ni的掺杂使得晶体中的缺陷和应力增加,拉曼光谱峰位发生红移,光致发光光谱发生猝灭现象。另外,共掺杂样品在室温条件下存在明显的铁磁性,饱和磁化强度随着掺杂量的增加而增强。