The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ...The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite.展开更多
基金supported by the National Key Laboratory of Advanced Composite Materials(No.KZ42191814)。
文摘The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite.