期刊文献+

二阶差分方程x<sub>n+1</sub>=a/x<sub>n</sub><sup>2</sup>+1/x<sub>n-1</sub> 的全局渐近稳定性

Global Asymptotic Stability of the Second-Order Nonlinear Difference Equation x<sub>n+1</sub>=a/x<sub>n</sub><sup>2</sup>+1/x<sub>n-1</sub>
在线阅读 下载PDF
导出
摘要 本文研究了非线性差分方程xn+1=a/xn2+1/xn-1 ,当参数a∈(0,∞) ,初值满足x-1,x0∈(0,∞)时的全局渐近稳定性。我们给出了方程的正平衡点和二周期解都不具有全局渐近稳定性的结论。特别的,解决了V. L. Kocic和G. Ladas著作[1]中的一个公开问题,部分解决了另一个公开问题。 In this paper the global asymptotic stability of nonlinear difference equation xn+1=a/xn2+1/xn-1 is investigated, where a and the initial conditions x-1,x0 are positive real numbers. We show that both of the unique positive equilibrium and the unique period-2 solution are not globally asymptotically stable. In particular, our results solve one open problem proposed by V. L. Kocic and G. Ladas in monograph [1], and partly solve another open problem proposed by them.
作者 秦旭光 冯伟
出处 《理论数学》 2017年第1期16-19,共4页 Pure Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部