摘要
2009年,Faudree提出在给定的σ2(G)条件下,图G过(k,t)-线性森林的(k,t,2t+k)-泛圈问题。本文证明了在该σ2(G)条件下,对任意,G中存在长为r或r+1的圈过(k,t)-线性森林。此外,本文还给出了图G是(k,t)-哈密顿的一个边数条件。
In 2009, Faudree proposed the (k,t,2t+k) -pancyclic problem of graph G passing through (k,t) - linear forest under given σ2(G) condition. In this paper, we prove that under the σ2(G) condi-tion, for any , there exists a cycle passing through (k,t) -linear forest of length r or r+1 in the graph G. In addition, an edge number condition that graph G is (k,t)-Hamiltonian is given.
出处
《应用数学进展》
2023年第1期29-36,共8页
Advances in Applied Mathematics