期刊文献+

基于网络分布式随机多任务优化算法

Random Multi-Task Optimization Algorithm Based on Distributed Network
在线阅读 下载PDF
导出
摘要 在大数据环境下,需要对海量数据进行分析处理,加快数据处理效率。分布式网络在处理进程任务时,通过调配网络中节点资源,分配给不同的节点处理不同计算、通信任务。无中心分布式一致优化问题大部分都是以无约束为基础,即表示每个节点的初始化节点为空。本文应用梯度投影法分布式方法,提出了随机优化的策略,融合本地目标的优化操作和邻居值,将融合获取的结果都投影给本地约束集。实验结果表明本算法稠密网络中信息融合的速度更快。 Under the big data working environment, it is necessary to analyze and process massive data to speed up the efficiency of data processing. The distributed network handles the tasks of the process by allocating the resources of the nodes in the network and assigning them to different nodes to handle different computing and communication tasks. Most of the decentralized and consistent optimization problems are based on unconstrained, which means that the initialization node of each node is empty. In this paper, a gradient projection method distributed method is used, and a stochastic optimization strategy is proposed. The optimization operation of the local target and the neighbor values are merged, and the results obtained by the fusion are projected to the local constraint set. Experimental results show that the proposed algorithm is faster in information fusion in dense networks.
出处 《应用数学进展》 2020年第6期838-843,共6页 Advances in Applied Mathematics
关键词 分布式网络 原对偶分离投影 数值实验 Distributed Network Primal Dual Separation Projection Numerical Experiments

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部