期刊文献+

降维CKF算法在大失准角传递对准中的应用 被引量:3

Dimension reduced CKF algorithm for transfer alignment with large misalignment angle
在线阅读 下载PDF
导出
摘要 惯性导航具备完全自主、高度隐蔽、数据频率高等优点,在机载精确制导武器中得到广泛应用。由于空中传递对准可能处于恶劣条件下,初始失准角较大,传统的线性传递对准模型不能反映系统的真实情况,线性滤波算法也将导致很大的对准误差,为实现精确对准,需要应用非线性模型和非线性滤波算法。而非线性滤波算法如无迹卡尔曼滤波(UKF)、容积卡尔曼滤波(CKF)等,在高维情况下,计算量很大,在弹载计算机计算资源受限的情况下,如何降低滤波算法的计算量是一个重要问题。本文将降维容积卡尔曼滤波算法应用在非线性传递对准模型中,将容积卡尔曼滤波的采样点由30个减少为6个,大幅减少了所需计算量。 Inertial navigation is completely autonomous,highly covert and has a high data frequency,which is widely used in airborne guided weapons.As the condition for transfer alignment may be bad during the flight,and the misalignment angle may be large,so that traditional linear model cannot accurately reflect the real situation of the system.To achieve a high alignment accuracy,nonlinear model and filter are utilized.Because nonlinear filter has a large calculation quantity and the computing power of on-board computer is limited,it is very important to reduce the calculated quantity of the filter.A dimension reduced Cubature Kalman Filter(CKF)algorithm is adopted in nonlinear transfer alignment model,and the sampling points are reduced from 30 to 6,significantly reducing the calculation quantity.
作者 宋嘉钰 杨黎明 李东杰 SONG Jiayu;YANG Liming;LI Dongjie(Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang Sichuan 621999,China)
出处 《太赫兹科学与电子信息学报》 2017年第5期740-744,共5页 Journal of Terahertz Science and Electronic Information Technology
关键词 捷联惯导 传递对准 容积卡尔曼滤波 降维容积卡尔曼滤波 strapdown inertial navigation system transfer alignment Cubature Kalman Filter dimension reduced Cubature Kalman filter
作者简介 宋嘉钰(1988-),男,四川省南充市人,硕士,主要从事惯性导航传递对准技术研究.email:songjiayu1988@126.com;杨黎明(1971-),男,四川省苍溪县人,研究员,主要从事传感器技术研究;李东杰(1972-),男,河南省柘城县人,研究员,主要从事制导与引信技术研究.
  • 相关文献

参考文献5

二级参考文献66

  • 1Zhou Zhanxin Gao Yanan Chen Jiabin.Unscented Kalman filter for SINS alignment[J].Journal of Systems Engineering and Electronics,2007,18(2):327-333. 被引量:14
  • 2KAIN J, CLOUTIER J. Rapid transfer alignment for tactical weapon application[C]//Proceedings of the AIAA Guidance, Navigation and Control Conference. Boston: American Institute of Aeronautics and Astronautics, 1989: 1290- 1300.
  • 3YU M J, LEE J G, PARK H W. Comparison of SDINS in-flight alignment using equivalent error models[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 35(3): 1046 - 1053.
  • 4LEFFERTS E J, MARKELY F L, SHUSTER M D. Kalman filtering for attitude estimation[J]. Journal of Guidance, Control and Dynam- ics, 1982, 5(5): 417 - 429.
  • 5VATHSAL S. Spacecraft attitude determination using a second-order nonlinear filter[J]. Journal of Guidance, Control and Dynamics, 1987, 10(5): 559- 566.
  • 6PSIAKI M L. The super-iterated extended Kalman filter[C]//Pro- ceedings of the AIAA Guidance, Navigation and Control Conference. Providence, RI: American Institute of Aeronautics and Astronautics, 2004:16 - 19.
  • 7GORDON N J, SALMOND D J, SMITH A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. Radar and Sig- nal Processing, 1993, 140(2): 107 -113.
  • 8OSHMAN Y, CARMI A. Attitude estimating from vector obser- vations using a genetic algorithm-embedded quaternion particle fil- ter[J]. Journal of Guidance, Control and Dynamics, 2006, 29(4): 879 - 891.
  • 9JULIER S J, UHLMANN J K. Unscented filtering and nonlinear es- timation[J]. Proceedings of the IEEE Aerospace and Electronic Sys- tems, 2004, 92(3): 401 - 422.
  • 10DAN SIMON. Optimal State Estimation[M]. Hoboken, New Jersey: John Wiley & Sons, 2006: 433-457.

共引文献24

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部