期刊文献+

基于精英策略的蚁群算法在AGV路径优化中的应用 被引量:7

Application of Ant Colony Algorithm Based on Elite Strategy in AGV Path Optimization
在线阅读 下载PDF
导出
摘要 文中针对蚁群算法收敛速度较慢、容易陷入局部最优解的缺点,在蚁群算法中引入遗传算法的精英策略,在挑选出精英蚂蚁后对其信息素的更新规则进行了改进,建立了新的蚁群算法模型。对于AGV在栅格图环境中最优路径的搜索问题,改进后的蚁群算法有着更高的搜索效率和更优的路径结果。 In this paper,aiming at the shortcomings of ant colony algorithm,such as slow convergence speed and easily falling into local optimal solutions,the elitist strategy of genetic algorithm was introduced into the ant colony algorithm. After the elite ants were selected,the update rules of their pheromone were improved,and a new ant colony algorithm model was established. For the optimal path search experiment of AGV in raster graph environment,the improved ant colony algorithm has higher search efficiency and better path results.
作者 孙宇翔 陈浩鹏 任传荣 SUN Yu-xiang;CHEN Hao-peng;REN Chuan-rong(Zhangjiagang Campus,Jiangsu University of Science and Technology,Zhangjiagang 215600,China)
出处 《物流工程与管理》 2022年第3期30-32,共3页 Logistics Engineering and Management
基金 基于混合蚁群算法的物流仓储AGV路径优化研究(126210019)。
关键词 AGV 路径优化 精英策略 蚁群算法 AGV path optimization elitist strategy ant colony algorithm
作者简介 孙宇翔(2000-),男,汉族,江苏无锡人,本科,研究方向:物流管理;陈浩鹏(2000-),男,汉族,江苏盐城人,本科,研究方向:物流管理;通讯作者:任传荣(1980-),女,汉族,山东兰陵人,讲师,硕士研究生,研究方向:排序论。
  • 相关文献

参考文献5

二级参考文献71

  • 1朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:124
  • 2孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055. 被引量:79
  • 3段海滨.蚁群算法原理及应用[M].北京:科学出版社,2005.12.
  • 4Zhou Zhiping, Nie Yunfeng, Gao Min. Enhanced ant colony optimization algorithm for global path planning of mobile robots [ C ]// 2013 5th International Conference on Computational and Information Sciences,2013:698 -701.
  • 5Chi Tsun Cheng, Kia Fallahi, Henry Leung, et al. An AUVs path planner using genetic algorithms with a deterministic crossover operator[ C]//2010 International Conference on Robotics and Automation(2010ICRA), 2010:2995 -3000.
  • 6Manikas T W, Ashenayi K, Wainwright R L. Genetic algorithms for autonomous robot navigation [ J 1. IEEE Instrumentation and Measurement Magazine,2007,10 (6) :26 - 31.
  • 7Alvarez A, Caiti A, Onken R. Evolutionary path planning for autonomous underwater vehicles in a variable ocean [ J 1- IEEE Journal of Oceanic Engineering,2004,29 (2) : 418 - 429.
  • 8Cobano J A, Conde R, Alejo D, et al. Path planning based on genetic algorithms and the Monte-Carlo method to avoid aerial vehicle collisions under uncertainties[ C ]//2011 International Conference on Robotics and Automation,2011:4429 -4434.
  • 9Ioannidis K, Sirakoulis G Ch, Andreadis I. Cellular ants : a method to create collision free trajectories for a cooperative robot team [ J ]. Robotics and Autonomous Systems,2011,59 ( 2 ) : 113 - 127.
  • 10Chandra Mohan B, Baskaran R. A survey: ant colony optimization based recent research and implementation on several engineering domain [ J ]. Expert Systems with Applications,2012,39 (4) :4618 - 4627. ( in Chinese).

共引文献250

同被引文献80

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部