期刊文献+

融合Spark与隐性兴趣的用户综合影响力度量 被引量:1

Comprehensive User Influence Measurement Combining Spark and Recessive Interest
在线阅读 下载PDF
导出
摘要 为解决传统用户影响力度量算法面向海量数据处理时运行速度下降的问题,提出一种基于隐性兴趣的用户综合影响力度量算法。通过隐含狄利克雷分配模型得到用户隐性兴趣偏好,根据困惑度和平均话题相似度综合确定最优兴趣话题数,并改进PageRank算法的用户兴趣传播转移率获得用户隐性兴趣传播影响力。在Spark计算框架的基础上,采用层次分析法且结合用户自身影响力和用户隐性兴趣传播影响力,计算得到最终用户影响力。实验结果表明,该算法综合考虑用户兴趣和用户自身影响因素,能够更客观高效地评估用户的真实影响力。 The speed of traditional user influence measurement algorithms is reduced when dealing with massive data.To address the problem,this paper proposes a comprehensive user influence measurement algorithm based on recessive interest.The Latent Dirichlet Allocation(LDA)model is used to obtain the recessive interests of the user,and the number of the optimal interest topics is determined based on the perplexity and the average topic similarity.Then,the transmission rate of user interests in the PageRank algorithm is improved to obtain the User Interest Factor(UIF).Finally,based on the Spark computing framework,the Analytic Hierarchy Process(AHP)is used to calculate the ultimate user influence by combining the influence of the user and UIF.Experimental results show that the proposed algorithm has a holistic consideration on user interests and the influence factors of the user,which enables it to provide more efficient and reasonable evaluation of the real influence of the user.
作者 童曼琪 黄江升 郭昆 TONG Manqi;HUANG Jiangsheng;GUO Kun(Fujian Provincial Key Laboratory of Spatial Data Mining and Information Sharing,Ministry of Education,Fuzhou University,Fuzhou 350002,China;Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing,Fuzhou University,Fuzhou 350002,China;State Grid Info-Telecom Great Power Science and Technology Co.,Ltd.,Fuzhou 350003,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第11期61-69,共9页 Computer Engineering
基金 国家自然科学基金(61300104) 福建省高等学校新世纪优秀人才支持计划(JA13021) 福建省杰出青年科学基金(2015J06014) 福建省高校产学合作项目(2017H6008)。
关键词 用户影响力 用户兴趣相似度 PAGERANK算法 Spark计算框架 隐含狄利克雷分配模型 user influence user interest similarity PageRank algorithm Spark computing framework Latent Dirichlet Allocation(LDA)model
作者简介 童曼琪(1993—),女,硕士研究生,主研方向为数据挖掘;黄江升,工程师;通信作者:郭昆,副教授、博士,E-mail:gukn123@163.com。
  • 相关文献

参考文献13

二级参考文献168

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2缔元信.微博媒体特性及用户使用状况研究报告[EB/OL].2010-08-16.2010-11-19.
  • 3JAVA A, SONG Xiaodan, FININ T, et al. Why we twitter: understanding microblogging usage and communities [EB/OL]. [2011-02-23]. http://aisl, umbc. edu/resources/369, pdf.
  • 4KRISHNAMURTHY B, GILL P, ARLITT M. A few chirps about twitter [ EB/OL ]. [ 2011-02-03 ]. http:// www2. research, att. com/- bala/papers/twit, pdf.
  • 5HUBERMAN B A, ROMERO D M, WU Fang. Social networks that matter: twitter under the microscope [ EB/ OL ]. [ 2011-03-11 ]. http ://firstmonday. org/htbin/cgiwrap/bin/ojs/index, php/fm/article/view/2317/2063.
  • 6YE Shaozhi, WU Felix. Measuring message propagation and social influence on twitter, com[J]. Lecture Notes in Computer Science, 6430:216-231.
  • 7KWAK H, LEE Changhyun, PARK H, et al. What is Twitter, a social network or a news media[ C]//Proceedings of the 19th International Conference on World Wide Web (WWW' 10). New York: ACM Press, 2010:591- 600.
  • 8LEE Changhyun, KWAK H, PARK H, et al. Finding influentials based on temporal order of information adoption in twitter[C]//Proceedings of the 19th International Conference on World Wide Web (WWW' 10). New York: ACM Press, 2010 : 1137-1138.
  • 9WENG Jianshu, LIM Ee-Peng, JIANG Jing, et al. TwitterRank: finding topic-sensitive influential twitterers [ C ]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM' 10 ). New York: ACM Press, 2010:261-270.
  • 10GHOSH R, LERMAN K. Predicting influential users in online social networks [ EB/OL ]. [ 2011-01-15 ]. http :// 65.54. 113, 26/Publication/13328540/predicting-influential-users-in-online-social-networks.

共引文献267

同被引文献21

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部