摘要
动力电池剩余电量的准确估算是电动汽车续航里程的重要依据和能量管理的基本前提,为降低电池系统因非线性,不平稳因素对荷电状态估计的不利影响。针对锂电池的状态数据采集存在非线性、不平稳以及外界干扰等问题,提出了基于高斯混合回归对荷电状态进行预测,以解决传统高斯过程模型含有异常数据和噪声的问题。利用K-means聚类算法与EM算法对高斯混合模型的超参数进行求解,然后采用高斯混合回归对输出的荷电状态进行预测。最后通过实验验证,并与高斯过程回归进行对比分析,验证了高斯混合回归算法在荷电状态估计过程中具有高精度和有效性。
The state of charge(SOC) of a power battery must be accurately estimated as it determines the endurance mileage and is the basic premise for the energy management of electric vehicles.However, SOC estimation of battery systems is degraded by nonlinearity, instability, and other factors.Accordingly, the characteristic state data of a lithium battery contain nonlinearities, fluctuations, and external interference. This study proposes an SOC prediction method based on Gaussian mixture regression(GMR), which resolves the problems of abnormal values embedded in the state data and noise in the traditional Gaussian procession model(GPM). The hyper-parameters of the Gaussian mixture model are sequentially optimized by k-means clustering and an EM algorithm. The GMR predicts the SOC output. In an experimental validation and a comparative analysis of GMR and GPM,the GMR algorithm achieved superior prediction accuracy and effectiveness in SOC estimation.
作者
魏孟
李嘉波
叶敏
高康平
徐信芯
WEI Meng;LI Jiabo;YE Min;GAO Kangping;XU Xinxin(Highway Maintenance Equipment National Engineering Laboratory,Chang'an University,Xi'an710064,Shaanxi,China)
出处
《储能科学与技术》
CAS
CSCD
2020年第3期958-963,共6页
Energy Storage Science and Technology
基金
国家自然科学基金青年项目(51805041)
中央高校专项资金资助项目(300102259204)。
关键词
动力电池
荷电状态
高斯过程回归
高斯混合回归
power battery
state of charge
Gaussian process regression
Gaussian mixture regression
作者简介
第一作者及联系人:魏孟(1997-),男,博士研究生,研究方向为新能源方向,E-mail:wm13484520242@163.com。