期刊文献+

基于高斯混合回归的锂离子电池SOC估计 被引量:7

SOC estimation of Li-ion battery based on gaussian mixture regression
在线阅读 下载PDF
导出
摘要 动力电池剩余电量的准确估算是电动汽车续航里程的重要依据和能量管理的基本前提,为降低电池系统因非线性,不平稳因素对荷电状态估计的不利影响。针对锂电池的状态数据采集存在非线性、不平稳以及外界干扰等问题,提出了基于高斯混合回归对荷电状态进行预测,以解决传统高斯过程模型含有异常数据和噪声的问题。利用K-means聚类算法与EM算法对高斯混合模型的超参数进行求解,然后采用高斯混合回归对输出的荷电状态进行预测。最后通过实验验证,并与高斯过程回归进行对比分析,验证了高斯混合回归算法在荷电状态估计过程中具有高精度和有效性。 The state of charge(SOC) of a power battery must be accurately estimated as it determines the endurance mileage and is the basic premise for the energy management of electric vehicles.However, SOC estimation of battery systems is degraded by nonlinearity, instability, and other factors.Accordingly, the characteristic state data of a lithium battery contain nonlinearities, fluctuations, and external interference. This study proposes an SOC prediction method based on Gaussian mixture regression(GMR), which resolves the problems of abnormal values embedded in the state data and noise in the traditional Gaussian procession model(GPM). The hyper-parameters of the Gaussian mixture model are sequentially optimized by k-means clustering and an EM algorithm. The GMR predicts the SOC output. In an experimental validation and a comparative analysis of GMR and GPM,the GMR algorithm achieved superior prediction accuracy and effectiveness in SOC estimation.
作者 魏孟 李嘉波 叶敏 高康平 徐信芯 WEI Meng;LI Jiabo;YE Min;GAO Kangping;XU Xinxin(Highway Maintenance Equipment National Engineering Laboratory,Chang'an University,Xi'an710064,Shaanxi,China)
出处 《储能科学与技术》 CAS CSCD 2020年第3期958-963,共6页 Energy Storage Science and Technology
基金 国家自然科学基金青年项目(51805041) 中央高校专项资金资助项目(300102259204)。
关键词 动力电池 荷电状态 高斯过程回归 高斯混合回归 power battery state of charge Gaussian process regression Gaussian mixture regression
作者简介 第一作者及联系人:魏孟(1997-),男,博士研究生,研究方向为新能源方向,E-mail:wm13484520242@163.com。
  • 相关文献

参考文献8

二级参考文献126

  • 1王定成.温室环境的支持向量机回归建模[J].农业机械学报,2004,35(5):106-109. 被引量:31
  • 2周越,司刚全,曹晖,贾立新,张彦斌.功率谱分析在筒式钢球磨煤机内存煤量测量中的应用研究[J].工业仪表与自动化装置,2006(6):21-24. 被引量:10
  • 3苏国韶,燕柳斌,张小飞,江权.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226. 被引量:24
  • 4鲁平,赵龙,陈哲.改进的Sage-Husa自适应滤波及其应用[J].系统仿真学报,2007,19(15):3503-3505. 被引量:60
  • 5Williams C K I, Rasmussen C E. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 7-32.
  • 6Kocijan J. Control algorithms based on Gaussian process models: A state-of-the-art survey[C].Proc of the Special Int Conf on Complex Systems: Synergy of Control, Communications and Computing. Ohrid, 2011: 69-80.
  • 7Park C W, Huang J H Z, Ding Y. Domain decomposition approach for fast Gaussian process regression of large spatial data sets[J]. J of Machine Learning Research, 2011, 12: 1697-1728.
  • 8He Z K, Liu G B, Zhao X J, et al. Temperature model for FOG zero-bias using Gaussian process regression[J]. Advances in Intelligent Systems and Computing, 2012, 180: 37-45.
  • 9Snelson E. Flexible and efficient Gaussian process models for machine learning[D]. London: Gatsby Computational Neuroscience Unit, University of London, 2007.
  • 10Williams C K I, Seeger M. Using the Nystrom method to speed up kernel machines[C]. Proc of the Int Conf on Advances in Neural Information Processing Systems(NIPS) 13. Denver, 2001: 682-688.

共引文献283

同被引文献159

引证文献7

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部