期刊文献+

基于结合混沌纵横交叉的PSO-DBN的短期光伏功率预测 被引量:13

Short-term PV power prediction based on particle swarm optimization combined with chaos crossover for deep belief networks
在线阅读 下载PDF
导出
摘要 为了提高短期光伏发电预测的准确性,文中采用深度置信网络(DBN)建立了各模型函数的预测模型。通过分析各模型函数的特征,建立了光伏发电模型的功率预测。传统的基于神经网络的功率预测难以训练多层网络,影响其预测精度。DBN采用无监督贪婪逐层训练算法构建了一个在回归预测分析中具有优异性能的多隐层网络结构,已成为深度学习领域的研究热点。DBN连接权重采用结合混沌纵横交叉的粒子群优化算法(CC-PSO)优化,避免出现由随机初始化导致的局部最优解现象,从而提高了DBN网络预测性能。最后,案例测试显示了所提出模型的有效性。 In order to improve the accuracy of short-term photovoltaic power generation forecasting,the deep belief network(DBN)is used to establish the forecasting models of each model function.The power prediction of photovoltaic power generation model is established by analyzing the characteristics of each model function.The traditional power prediction of photovoltaic model based on neural network is difficult to train multi-layer network,thus affecting its prediction accuracy.DBN uses unsupervised greedy layer-by-layer training algorithm to construct a multi-hidden layer network structure with excellent performance in regression prediction analysis,which has become a research hotspot in the field of deep learning.The weight of DBN connection is optimized by particle swarm optimization combined with chaotic crossover(CC-PSO),which avoids the phenomenon of local optimal solution caused by random initialization and improves the prediction performance of DBN network.Finally,case tests show the effectiveness of the proposed model.
作者 孙辉 冷建伟 Sun Hui;Leng Jianwei(School of Electrial and Electronic Engineering,Tianjin University of Technology,Tianjin 300384,China)
出处 《电测与仪表》 北大核心 2020年第6期67-72,共6页 Electrical Measurement & Instrumentation
关键词 深度信念网络 混沌横纵交叉 粒子群算法 预测精度 光伏功率预测 deep belief network chaos crossover Particle swarm optimization Prediction accuracy Photovoltaic power prediction
作者简介 孙辉(1993-),女,硕士研究生,从事清洁能源并网技术研究。Email:453944692@qq.com;冷建伟(1961-),男,硕士生导师,教授,主要研究领域为电力电子、运动控制以及计算机控制系统。Email:lengjianwei61101@163.com。
  • 相关文献

参考文献8

二级参考文献90

  • 1刘倩,崔晨,周杭霞.改进型SVM多类分类算法在无线传感器网络中的应用[J].中国计量学院学报,2013,24(3):298-303. 被引量:8
  • 2姚李孝,宋玲芳,李庆宇,万诗新.基于模糊聚类分析与BP网络的电力系统短期负荷预测[J].电网技术,2005,29(1):20-23. 被引量:61
  • 3曹双华,曹家枞.太阳逐时总辐射混沌优化神经网络预测模型研究[J].太阳能学报,2006,27(2):164-169. 被引量:38
  • 4Kim I S,Kim M B,Youn M J.New maximum power point tracker using sliding mode observer for estimation of solar array current in the grid-connected photovoltaic system[J].EEE Transactionson Industrial Electronics,2006,53(4):1027-1035.
  • 5Chakraborty S,Weiss M D,Simoes M G..Distrib-uted intelligent energy management system for a single-phase high-frequency AC microgrid[J].IEEE Transac -tions on Industr-ial Electronics,2007,54(1):97-109.
  • 6Yona A,Senjyu T,Funabashi T.Appli-cation of recurrent neural network to Short-term-ahead generating power fo-recasting for photovoltaic System[C].IEEE Power Engineering Society General Meeting,2007.
  • 7Li,Ying-Zi,Luan,Ru,Niu,and Jin-Cang.Forecast of power generation for grid-connected photovoltaic system based on grey modeland Markov chain.2008 3rd IEEE Conference on Industrial Electronics and Applications,pp.1729-1733,June 2008.
  • 8Nadja Saleck and Lueder von Bremen.Wind power forecast error smoothing within a wind farm[Z].The Science of Making Torque from Wind,Conference Series 75 (2007) 012051.
  • 9EdwardSC.可持续能源的前景[M].北京:清华大学出版社.2002.74-75.
  • 10Mellit A, Pavan A M. A 24-h Forecast of Solar h-radiance Using Arti- ficial Neural Network: Application for Performance Prediction of a Grid-connected PV Plant at Trieste, Italy [ J ]. Solar Energy, 2010,.

共引文献301

同被引文献180

引证文献13

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部