期刊文献+

预测首次发作急性胰腺炎病情严重程度列线图的建立 被引量:9

Establishment of a nomogram for predicting the severity of the first-onset acute pancreatitis
原文传递
导出
摘要 目的建立一个对首次发作急性胰腺炎(AP)病情严重程度有早期预测价值的可视化的列线图。方法收集2013年1月至2016年1月间温州医科大学附属第一医院收治的发病72 h内人院的首次发作A P患者706例,依据2012年亚特兰大分类标准将A P患者分为非重症胰腺炎(NSAP,即MAP+MSAP)和重症胰腺炎(SAP)两组,统计并分析患者的一般资料(年龄、体重指数和人院时间等)、实验室检査(血淀粉酶、血糖、白蛋白、白细胞、肌酐、尿素氮)结果。对纳人的相关临床指标进行Logistic单因素及多因素回归分析,根据有统计学差异的指标得出回归方程式,利用R语言软件可视化处理逻辑回归(LR)模型获得列线图,并通过受试者工作特征(R0 C)曲线分析验证。结果单因素Logistic回归分析结果显示,NSAP和SAP两组间血糖、人院时肌酐、人院24 h肌酐、人院时尿素氮、人院24 h尿素氮、白细胞及白蛋白的〇尺(95%C/)值分别为1.132(1.080~1.186),1.019(1.013~1_025),1.026(1.020-1.033),1.066(1.035-1.099),1.333(1.241~1.432),1.083(1.032~1.136)和0.853(0.811~0.889),差异均有统计学意义(P值均<0.01)。经多因素Logistic回归分析LR模型的回归方程式为Y=-2.657^-0.116 x白蛋白(g/L)+0.082 x白细胞(xlO V L)+0.118 x血糖(mmol/L)+0.022 x人院24 h肌酐(pmol/L)。列线图总分超过60分有发生SAP的可能,总分超过130分发生SAP可能将高达14%以上。进一步通过ROC曲线分析验证,本研究建立的LR模型的曲线下面积(AUC)预测SAP发生的灵敏度、特异度均优于尿素氮、肌酐、BISAP评分单独预测。结论本列线图可能是预测首次AP病情严重程度的有效临床工具。 Objective To establish a visualized nomogram with early predictive value for the severity of first-onset acute pancreatitis(AP).Methods 706 cases of first-onset AP patients admitted to the First Affiliated Hospital of Wenzhou Medical University within 72 hours from January 2013 to January 2016 were collected.According to the revised Atlanta classification of AP in 2012,AP patients was divided into nonsevere pancreatitis(NSAP,also called mild acute pancreatitis and moderately severe acute pancreatitis)group and severe acute pancreatitis(SAP)group.The demographic data(age,body mass index and admission time,etc)and laboratory tests(serum amylase,blood sugar,albumin,white blood cells,creatinine,urea nitrogen)were collected and statistically analyzed.Logistic univariate and multivariant regression analysis were performed based on the relevant clinical indicators.The statistically significant indicators were used to obtain regression equations.The R-language software was used to obtain the visualized nomogram via LR model,which was further validated by ROC curve analysis.Results In univariate logistic regression analysis,the OR(95%Cl)values of blood glucose,creatinine at admission and 24 h after admission,urea nitrogen at admission and 24 h after admission,white blood cell,albumin in NSAP group and SAP group were 1.132(1.080-1.186),1.019(1.013-1.025),1.026(1.020-1.033),1.066(1.035-1.099),1.333(1.241-1.432),1.083(1.032-1.136),and 0.853(0.811-0.889),and all the differences were statistically significant(all P values<0.05).Multivariate logistic regression analysis showed that the regression equation of the LR model w a s Y=-2.657-0.116 x a lb u m in(g/L)+0.082 x w h ite b lo o d c e ll(x l09/L)+0.118 x g ly c e m ia(m m o l/L)+0.022 x 24 h after admission creatinine(jjimol/L).A total score of more than 60 points on the nomogram predicted the possibility of SAP.If the total score exceeded 130,the possibility of SAP may be up to 14%or more.Furthermore,the ROC curve analysis confirmed that the sensitivity and specificity of LR model established in this study for predicting of SAP were superior to those of urea nitrogen,creatinine and BISAP score alone by AUC,respectively.Conclusions This nomogram may be a useful clinical tool for predicting the severity of the first-onset acute pancreatitis.
作者 陈清 林素涵 黄跃跃 潘景业 Chen Qing;Lin Suhan;Huang Yueyue;Pan Jingye(Department of Emergency y Wenzhou Central Hospital,Wenzhou 325000,China;Intensive Care Unit,First Affiliated Hospital of Wenzhou Medical University,Wenzhou 325000,China)
出处 《中华胰腺病杂志》 CAS 2019年第6期420-424,共5页 Chinese Journal of Pancreatology
关键词 胰腺炎 列线图 预后 Pancreatitis Nomograms Prognosis
作者简介 通信作者:潘景业,Email:pan334710932@126.com。
  • 相关文献

参考文献2

二级参考文献8

共引文献367

同被引文献120

引证文献9

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部