摘要
在对应于杂化弦的无限维 Kahler 流形的 DiffS′/S′和 Kahler 超流形 super-DillS′/S′上,存在两种类型的丛.一类是全纯矢量丛,它的 Ricci 曲率正好是杂化弦的 Virasoro 代数和超 Vira-soro 代数的反常中心项,另一类是复线丛,它可以被解释为该理论的鬼真空,它的曲率与临界维数时全纯矢量丛的曲率正好相差一个负号.本文用阶化 flay 流形的技术和几何量子代方法分别计算了这两类丛的 Ricci 曲率,杂弦反常相消的条件由这两类丛的乘积丛的 Ricci 曲率为零给出.这样,在临界维数我们就可以定义一个重参数不变的真空.
There are two types of bundles constructed on the kahler manifold DillS′/S′and the Kahler super-manifold super-DiffS′/S′for the heterotic string.One is the holomorphic vector bundle, whose Ricci curvature is just the central terms of the Virasoro algebra and super-Virasoro algebra corresponding to the heterotic string.The other is the complex line bundle,which can be interpret- ed as the ghost vaccum for the.theory.In this paper,the Ricci curvatures of the two bundles are calculated by using the flag manifold techniques and the geometric quantization method respec- tively.Then,the condition of the anomaly cancellation is given by the vanishing of the Ricci ten- sot of the product bundle of the two bundles.