摘要
针对不同年龄跨度下人脸对差异的不同,文中提出基于集成人脸对距离学习(EFPML)的跨年龄人脸验证方法.对不同年龄跨度的人脸对分别学习距离度量,然后使用集成方法对人脸对进行重表示,使人脸对重表示更具有判别性,并且可以扩充有限的跨年龄数据集.在公开的跨年龄人脸数据库FG-NET和CACD上的实验表明,文中方法可以有效减少年龄带来的影响,提高验证性能.
Aiming at the variations of face pairs caused by different age gaps, an ensemble face pairs distance metric learning method(EFPML) is proposed for cross-age face verification. Firstly, the whole dataset is divided into several subsets with different age gaps. Then, a distance metric is learned for each subset. Finally, all face pairs are re-represented for many times via learnt distance metrics, the new representations are more distinguishable and the limited cross-age face data are expanded. To evaluate the proposed method, a series of experiments are conducted on two real-world cross age datasets, FG-NET and CACD. The results show that EFPML consistently outperforms the state-of-the-art methods and it has ability to reduce the effect of aging and improve verification performance.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2017年第12期1114-1120,共7页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.61632004
61370129
61375062)
长江学者和创新团队发展计划(No.IRT201206)资助~~
关键词
跨年龄
人脸验证
距离度量学习
集成
分类
Cross-Age, Face Verification, Distance Metric Learning, Ensemble, Classification
作者简介
吴嘉琪,女,1992年生,硕士研究生,主要研究方向为机器学习、图像处理.E-mail:15120449@bjtu.edu.cn.;景丽萍(通讯作者),女,1978年生,博士,教授,主要研究方向为机器学习、高维数据挖掘及其在社交媒体处理和智能推荐中的应用.E-mail:lpjing@bjtu.edu.cn