摘要
针对微电网系统运行方式灵活、拓扑结构多样的特点,基于对小波变换、奇异值分解和泛化信息熵基本理论的分析,揭示了小波奇异熵能够对故障信号给出确定的量度,将小波奇异熵与自组织特征映射(self-organizing feature map,SOM)神经网络相结合,提出一种能够适应微电网系统拓扑结构变化情况的故障诊断方法。利用PSCAD4.2建立了微电网故障仿真系统,进行故障诊断仿真试验。试验结果表明:该方法不受故障位置、故障时刻等因素的影响,在微电网系统拓扑结构发生变化的情况下,能实现有效的故障诊断。
According to the diversity of micro grid's topology, through analyzing the theories of wavelet transform, singular value decomposition and extended shannon-entropy, the wavelet singular entropy could measure the fault signal. A fault diagnosis method for the micro grid system was proposed by integrating the wavelet singular entropy with the self organizing feature map (SOM) neural network. A micro grid fault simulation system was established by PSCAD4. 2. The simulation results proved that the proposed diagnosis method was insensitive to the location and the time fault occurs, which had strong adaptability to the variation in structure topology.
出处
《山东大学学报(工学版)》
CAS
北大核心
2017年第5期118-122,129,共6页
Journal of Shandong University(Engineering Science)
基金
国家自然科学基金资助项目(61374132)
浙江省公益基金资助项目(2016C31SA901322)
上海海事大学研究生创新基金资助项目(2014ycx057)
关键词
小波奇异熵
SOM神经网络
微电网
拓扑结构
故障诊断
wavelet singular entropy
SOM neural network
micro-grid
topology structure
fault diagnosis
作者简介
邱路(1986),男,福建武夷山人,博士研究生,主要研究方向为变拓扑系统的故障诊断技术.E-mail:qiuluchn@163.com
通讯作者:叶银忠(1964-)男,浙江建德人,教授,博士,主要研究方向为故障诊断与容错控制技术.E-mail:yzye@sit.edu.cn