摘要
With the method of separation of variables and the eigenfunction expansion employed, an analytical solution is presented for the radiation and diffraction of a rectangular structure with an opening near a vertical wall in oblique seas, in which the unknown coefficients are determined by the boundary conditions and matching requirement on the interface. The effects of the width of the opening and the angle of incidence on the hydrodynamic characteristics of a rectangular structure with an opening near a vertical wall are mainly studied. The comparisons of the calculation results with wall-present and with wall-absent are also made. The results indicate that the variation trends of the heave added mass and excitation force with wall-present are almost the same as those with wall-absent, and that the peak values in the former case are obviously larger than those in the latter due to the reflection of the vertical wall.
With the method of separation of variables and the eigenfunction expansion employed, an analytical solution is presented for the radiation and diffraction of a rectangular structure with an opening near a vertical wall in oblique seas, in which the unknown coefficients are determined by the boundary conditions and matching requirement on the interface. The effects of the width of the opening and the angle of incidence on the hydrodynamic characteristics of a rectangular structure with an opening near a vertical wall are mainly studied. The comparisons of the calculation results with wall-present and with wall-absent are also made. The results indicate that the variation trends of the heave added mass and excitation force with wall-present are almost the same as those with wall-absent, and that the peak values in the former case are obviously larger than those in the latter due to the reflection of the vertical wall.
基金
supported by the National Natural Science Foundation of China(Grant Nos.51079082 and 51679132)
the Nature Science Foundation of Shanghai City(Grant No.14ZR1419600)
the Research Innovation Projects of 2013 Shanghai Postgraduate(Grant No.20131129)
作者简介
Corresponding author. E-mail: hszhang@shmtu.edu.cn