期刊文献+

石墨烯负载Zn_2GeO_4光催化剂的制备及其降解有机污染物的性能研究

Preparation of Zn_2GeO_4/GO Composites and the Research of Their Photocatalytic Activity for Degradation of Organic Pollutants
在线阅读 下载PDF
导出
摘要 采用溶剂热法制备Zn_2Ge O_4纳米晶;并将其负载到氧化石墨烯(GO)上。通过两步水热法制备了一系列Zn_2Ge O_4/GO复合光催化剂。利用X-射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见吸收光谱(UV-Vis)等手段对催化剂的结构、形貌及光学性能进行了表征;并以罗丹明B(Rh B)作为目标降解污染物,对其进行了光催化性能测试。结果表明,Zn_2Ge O_4纳米晶均匀地分散在GO上,与单纯的Zn_2Ge O_4纳米晶相比,Zn_2Ge O_4/GO复合物的光催化性能有了明显的提高。当GO质量分数为5%时,罗丹明B降解率达到95.21%;且经过5次循环使用后,仍然保持较高的光催化活性,具有良好的稳定性。 The Zn2GeO4nanocrystalline are prepared via solvothermal method and loaded on the graphene oxide( GO). The Zn2GeO4-graphene oxide nanocomposite has been synthesized through a simple two-steps reaction. The structure,topography and the optical property of the photocatalys were characterized by X-ray diffraction( XRD),transmission electron microscopy( TEM) and ultraviolet-visible spectroscopy( UV-Vis). Rhodamine B( Rh B) was used as the degradation agent to evaluate the performance of the photocatalyst. The result show that the Zn2GeO4nanocrystal is dispersed on the surface of GO uniformly,and compared with pure Zn2GeO4,the photocatalytic activity of the Zn2GeO4/ GO composite is obvious enhanced. When the mass of GO is 5%,the degradation of Rhodamine B is up to 95. 21%,and after reused for five times,the photocatalysis still exhibits a better photocatalytic activity. The Zn2GeO4/ GO nanocomposite photocatalyst possess excellent stability and reusability.
出处 《科学技术与工程》 北大核心 2016年第11期30-34,共5页 Science Technology and Engineering
关键词 Zn2GeO4纳米晶 GO 光催化 Zn2GeO4 GO photocatalytic
作者简介 张倩,硕士研究生。研究方向:化学工艺。E-mail:916180368@qq.com。
  • 相关文献

参考文献12

  • 1Donal A K, Kevin G M, Pilar F I, et al. Solar photocatalysis for wa- ter disinfection: materials and reactor design. Catalysis Science & Technology, 2014; 4 (5) : 1211-1226.
  • 2Miguel G, Alexander R, Cyril B, et al. A highly stable polypyridyl- based cobalt catalyst for homo-and heterogeneous photocatalytic water reduction. Dalton Transactions, 2012 ; 42 (2) : 334-337.
  • 3Mrinmoyee B, Neha G, Ashok K G. A type-II semiconductor (ZnO/ CuS heterostrncture) for visible light photocatalysis. Journal of Mate- rials Chemistry A, 2014; 2 (20) : 7517-7525.
  • 4Gabriele C, Elsie A Q, Siglinda P. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy & Environmental Science, 2013; 6 (6) :1711-1731.
  • 5Femando F, Raquel P, Silvia S, et al. Photoeatalytic materials: re- cent achievements and near future trends. Journal of Materials Chem- istry A, 2014; 2 (9) : 2863-2884.
  • 6Yang M, Ji Y, Liu W, et al. Facile microwave-assisted synthesis and effective photocatalytic hydrogen generation of Zn2 GeO4 with different morphology. RSC Advances, 2014; 4 (29) : 15048-15054.
  • 7Yan S C, Wang J J, Zou Z G. An anion-controlled crystal growth route to Zn2 GeQ nanorods for efficient photocatalytie conversion of CO2 into CH4. Dalton Transactions, 2013; 42 (36) : 12975-12979.
  • 8Lin K Y, Ma B J, Su W G, et al. Improved photocatalytic hydrogen generation on Zn2 GeO4 nanorodswith high erystallinity. Applied Sur- face Science, 2014; 118 (15) : 8194-8199.
  • 9Jiang G H, Tang B L, Li X, et al. Preparation of Ag-modified Zn2 GeO4 nanorods for photo-degradation of organic pollutants. Powder Technology, 2013; 251:37--40.
  • 10Zhang Y H, Zhang N, Tang Z R, et al. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of gra- phene as a macromolecular photosensitizer. ACS Nano, 2012; 6 ( 11 ) : 9777--9789.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部