摘要
The neon flying squid (Ommastrephes bartramii) is a short-lived opporttmistic species widely distributed in subtropical and temperate waters in the North Pacific Ocean. The life cycle of O. bartramii from planktonic eggs to nektonic adults is closely linked to oceanographic conditions. The fluctuations in O. bartramii abundance and distribution tend to increase and widen continu- ously due to the heavy influences of ocean-climate events on various spatio-temporal scales. In this study, we reviewed the interac- tion between O. bartramii and oceanography variability in the North Pacific with respect to large-scale climatic-oceanic phenomena including E1 Nifio, La Nifia, Kuroshio, Oyashio and Pacific Decadal Oscillation (PDO), as well as regional environmental variables such as sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), chlorophyll-a (Chl-a) concentration, and plankton density. The population dynamics of O. bartramii is mediated mainly by meso- and large-scale climatic-oceanic events (e.g., Kuroshio and Oyashio Currents) rather than other local environmental conditions (e.g., SST and Chl-a concentration), because all of the oceanographic influences are imposed on the context of large-scale climate changes (e.g., PDO). An unstructured-grid finite- volume coastal ocean model coupled with an individual-based model is proposed to simulate relevant physical-biological oceano- graphic processes for identifying ocean-climate influence and predicting O. bartramii distribution and abundance in the North Pacific. Future research needs to be focused on improving the knowledge about early life history of O. bartramii and evaluating the relation- ship between marine physical environment and two separate passive drifting life stages of O. bartramii including free-floating eggs and planktonic paralarvae.
The neon flying squid(Ommastrephes bartramii) is a short-lived opportunistic species widely distributed in subtropical and temperate waters in the North Pacific Ocean. The life cycle of O. bartramii from planktonic eggs to nektonic adults is closely linked to oceanographic conditions. The fluctuations in O. bartramii abundance and distribution tend to increase and widen continuously due to the heavy influences of ocean-climate events on various spatio-temporal scales. In this study, we reviewed the interaction between O. bartramii and oceanography variability in the North Pacific with respect to large-scale climatic-oceanic phenomena including El Ni?o, La Ni?a, Kuroshio, Oyashio and Pacific Decadal Oscillation(PDO), as well as regional environmental variables such as sea surface temperature(SST), sea surface height(SSH), sea surface salinity(SSS), chlorophyll-a(Chl-a) concentration, and plankton density. The population dynamics of O. bartramii is mediated mainly by meso- and large-scale climatic-oceanic events(e.g., Kuroshio and Oyashio Currents) rather than other local environmental conditions(e.g., SST and Chl-a concentration), because all of the oceanographic influences are imposed on the context of large-scale climate changes(e.g., PDO). An unstructured-grid finitevolume coastal ocean model coupled with an individual-based model is proposed to simulate relevant physical-biological oceanographic processes for identifying ocean-climate influence and predicting O. bartramii distribution and abundance in the North Pacific. Future research needs to be focused on improving the knowledge about early life history of O. bartramii and evaluating the relationship between marine physical environment and two separate passive drifting life stages of O. bartramii including free-floating eggs and planktonic paralarvae.
基金
financially supported by the National High-Tech R&D Program(863 Program)of China(2012AA092303)
the Project of Shanghai Science and Technology Innovation(12231203900)
the Industrialization Program of National Development and Reform Commission(2159999)
the National Key Technologies R&D Program of China(2013BAD13B00)
the Shanghai Universities First-Class Disciplines Project(Fisheries A)
the Funding Program for Outstanding Dissertations in Shanghai Ocean University
作者简介
Corresponding author. Tel: 0086-21-61900306 E-mail: xjchen@shou.edu.cn