期刊文献+

基于多混沌算子遗传算法的混合动力汽车控制策略优化 被引量:16

Control Strategy Optimization for Hybrid Electric Vehicle Based on Multi-Chaotic Operators Genetic Algorithm
在线阅读 下载PDF
导出
摘要 为某款装备了电池/超级电容混合储能系统的并联型混合动力汽车设计了模糊控制策略.结合遗传算法的种群进化和混沌序列的随机遍历特性,将混沌初始化算子、混沌扰动算子、混沌局部搜索算子引入多目标非占优排序遗传算法(NSGA-II)中,构建了新的多混沌算子遗传算法(MCO-NSGA-II).运用MCO-NSGA-II算法进行了混合动力汽车模糊控制策略优化,以改进车辆的燃油经济性及HC、CO和NOx的排放性能.仿真结果表明,混沌初始化算子和混沌扰动算子可以改善原NSGA-II算法的搜索能力并增加种群多样性,而混沌局部搜索算子可以进一步增强算法局部搜索能力,能更好地搜索到理想的Pareto解集.运用MCO-NSGA-II算法进行优化,使混合动力汽车在欧洲城市驾驶循环(ECE)下的燃油消耗降低了11.8%,HC、CO和NOx排放分别下降了7.72%、15.72%和11.77%. This paper presented a fuzzy logic control strategy for a parallel HEV equipped with battery/ultra capacitor based hybrid energy storage system. By combining the population evolution feature of genetic algorithm and the randomicity and ergodicity of chaos sequence, the chaotic initialization, disturbance and local search operators were introduced into non-donminated sorting genetic algorithm-II(NSGA-II) to con- struct a novel multi-chaotic operators NSGA-II (MCO-NSGA-II). MCO-NSGA-II was adopted to optimize the fuzzy control strategy for improving the fuel economy and emission performance of the target HEV. The results demonstrate that chaotic initialization, disturbance operators can improve the searching ability of NSGA-II and increase the diversity of the solutions. The chaotic local search operator can further im- prove the local searching ability to obtain better pareto solutions. By adopting MCO-NSGA-II, the fuel consumption of HEV under ECE driving cycle is reduced by 11.8% while the HC, CO and NOx emissions of HEV are decreased by 7.72~, 15.72~ and 11.77%.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第4期442-449,456,共9页 Journal of Shanghai Jiaotong University
关键词 混沌算子 遗传算法 多目标优化 混合动力汽车 chaotic operators genetic algorithm multi-objective optimization hybrid electric vehicle
作者简介 梁俊毅(1983-),男,广西省柳州市人,博士生,主要研究方向为混合动力汽车能量管理优化. 殷承良(联系人),男,教授,博士生导师,电话(Tel.):02134206323;Email:clyinl965@sjtu.edu.cn.
  • 相关文献

参考文献5

二级参考文献48

  • 1王仁乾,马黎黎.吸声材料的物理参数对消声瓦吸声性能的影响[J].哈尔滨工程大学学报,2004,25(3):288-294. 被引量:22
  • 2ZhuZhengli ZhangJianwu YinChengliang.OPTIMIZATION APPROACH FOR HYBRID ELECTRIC VEHICLE POWERTRAIN DESIGN[J].Chinese Journal of Mechanical Engineering,2005,18(1):30-36. 被引量:10
  • 3汤渭霖,何世平,范军.含圆柱形空腔吸声覆盖层的二维理论[J].声学学报,2005,30(4):289-295. 被引量:45
  • 4PeREZ L V, BOSSIO G R, MOITRE D, et al. Optimization of power management in a hybrid electric vehicle using dynamic programming[J]. Mathematics and Computers in Simulation 2004, 73: 244-254.
  • 5SCIARRETTA A, BACK M, GUZZELLA L. Optimal control of parallel hybrid electric vehicles[J]. IEEE Transaction on Control System Technology, 2004, 12(3): 352- 363.
  • 6WON J S, LANGARI R, EHSANI M. An energy management and charge sustaining strategy for a parallel hybrid vehicle with CVT[J]. IEEE Transaction on Control System Technology, 2005, 13(2): 313- 320.
  • 7SCHOUTEN N J, SALMAN M A, KHEIR N A. Fuzzy logic control for parallel hybrid vehicles[J]. IEEE Transaction on Control System Technology, 2002, 10(3): 460-467.
  • 8LEE H D, SULK S. Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle[J]. IEEE Transaction on Industrial Electronics, 1998, 45(4): 625-632.
  • 9SCHOUTEN N J, SALMAN M A, KHEIR N A. Energy management strategies for parallel hybrid vehicles using fuzzy logic[J]. Control Engineering Practice, 2003, 11 (2): 171-177.
  • 10HUANG K D, TZENG S C, JENG T M, et al. Integration mechanism for a parallel hybrid vehicle system[J]. Applied Energy, 2005, 82(2): 133-147.

共引文献45

同被引文献163

引证文献16

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部