期刊文献+

贝叶斯推理模型耦合非平稳边缘保持先验的图像模糊消除 被引量:4

Image Deblurring Based on Bayesian Model Integration with Non-Stationary Edge Preserving Priors
在线阅读 下载PDF
导出
摘要 目的针对现行图像去模糊消除机制忽略了图像空间结构特征,降低了模糊消除效果,且算法稳定性不佳,无法克服解模糊等的不足,提出了贝叶斯模型耦合非平稳先验的图像去模糊机制。方法基于二阶统计量方法,定义模糊函数;引入滤波因子和超参数,构造非平稳边缘保持先验模型;基于贝叶斯推理,引入雅克比矩阵设计了超参数动态更新机制;用耦合先验模型与贝叶斯模型完成图像复原。在仿真平台上测试了算法的性能。结果与其他几种机制相比,提出的算法机制去模糊质量更好,局部放大后纹理细节仍然清晰,并且去模糊前后图像的结构相似度更高。结论提出的算法具有较佳的图像去模糊效果,重构质量理想。 Objective The current image deblurring removal mechanism ignores the image space structure characteristics, which reduces the deblurring effect, and there are other problems such as poor stability of these algorithms, which cannot overcome the lack of ambiguity. Targeting at these problems, we proposed a Bayesian model coupled non-stationary priors image deblurring mechanism. Methods Based on second-order statistics, vague function was defined. Filtering factor and ultra-parameter structure were introduced to maintain a priors model of non-stationary edge preserving. Based on Bayesian inference, Jacobian matrix was introduced to design the hyperparameter dynamic update mechanism. The coupled priors model and Bayesian model were used to complete image reconstruction. The performance of the algorithm was tested on the simulation platform. Results Compared with several other mechanisms, the mechanism proposed in this paper showed better deblurring performance. The texture details remained clear after local amplification, and the structural similarity of the images before and after deblurring was higher. Conclusion The proposed algorithm had relatively good image deblurring performance and the reconstruction quality was ideal.
出处 《包装工程》 CAS CSCD 北大核心 2014年第19期98-102,129,共6页 Packaging Engineering
基金 国家自然科学基金(U1204611) 河南省自然科学基金(132300410278)
关键词 图像去模糊 贝叶斯模型 非平稳先验 雅克比矩阵 边缘保持 image delurring Bayesian model non-stationary priors Jacobian matrix edge preserving
作者简介 徐向艺(1979-),女,河南平顶山人,硕士,平顶山学院讲师,主要研究方向为算法优化设计与图像处理。
  • 相关文献

参考文献14

二级参考文献50

共引文献29

同被引文献51

  • 1蒋焕新,赵琳.组合称量技术的研究[J].包装工程,2005,26(2):66-67. 被引量:5
  • 2CAI J F, DONG B, OSHER S. Image Restoration: Total Varia- tion, Wavelet Frames, and Beyond[J]. Journal of the American Mathematical Society, 2012,33 (17) : 1033-1039.
  • 3MONTEFUSCO L B, LAZZARO D. An Iterative-Based Image Restoration Algorithm With an Adaptive Parameter Estimation [J]. Image Processing, IEEE Transa, 2012, 21 (4) : 1676- 1686.
  • 4SHAO Ke-yong, ZOU Yun, LIU Yuan-hong. Based on Total Variation Regularization Iterative Blind Image Restoration Alg0rithm[J]. Sensors & Transducers, 2014,167 (3) : 36-42.
  • 5REEVES S J. Fast Image Restoration without Boundary Arti- facts[J]. IEEE Trans. Image Process, 2005, 14 (10) : 1448- 1453.
  • 6GOLDSTEIN T, OSHER S. The Split Bregman Method for Ll-regularized Problems[J]. SIAM Journal on Imaging Sci- ences, 2009,2 (2) : 323-329.
  • 7AFONSO M V, JOSE M. Fast Image Recovery Using Variable Splitting and Constrained Optimization[J]. Image Processing IEEE Transa, 2009, 19 (9) : 2345-2356.
  • 8FIGUEIREDO M A T, BIOUCAS-DIAS J M. Restoration of Poissonian Images Using Alternating Direction Optimization [J]. IEEE Trans Image Process, 2010,19(12) : 3133-3145.
  • 9DONG Bin, ZHANG Yong. An Efficient Algorithm for 1 Mini- mization in Wavelet Frame Based Image Restoration[J]. Jour- nal of Scientific Computing, 2013,54 (3) : 350-368.
  • 10XU H, SUN Q, LUO N. Iterative Nonlocal Total Variation Regularization Method for Image Restoration[J]. Plos one, 2013,8(6) :658-665.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部