期刊文献+

小光斑激光雷达数据估测森林树高研究进展 被引量:22

Research Progress in Estimating Forest Tree Height Using Small Footprint Lidar Data
原文传递
导出
摘要 小光斑激光雷达可以同时获得森林的垂直及水平结构参数,因光斑直径较小,可以做到森林单木结构参数的准确估计,进而推广到样方甚至更大区域森林结构参数的估计,近年来在林业中得到广泛应用。文中主要从树高估计方面对小光斑激光雷达在林业中的应用进行研究,通过对先前类似文献进行归纳总结发现,在小光斑激光雷达估测森林树高方面仍存在着一些问题,从而限制了森林树高估测精度的提高,如点云分类算法、点云密度、森林郁闭度、单木的准确分割等,还对小光斑激光雷达估计森林树高中所存在的问题进行了概括,并提出了改进建议。 Small footprint LiDAR can simultaneously get both vertical and horizontal forest structure parameters and help accurately estimate the structural parameters of single tree owing to its smaller footprint size, and therefore it can be used in plots and even larger regions. Because of this, it has been widely used in forestry in recent years. This paper studied the tree height estimate using small footprint LiDAR. Based on literature reviews, the problems limiting the accuracy of forest tree height estimate were listed, including point cloud classification algorithm, point cloud density, forest canopy density, individual tree segmentation and so on. Finally, some solutions to the problems were put forward.
出处 《世界林业研究》 CSCD 北大核心 2014年第2期29-34,共6页 World Forestry Research
基金 中央高校基本科研业务费专项资金支撑项目(DL12EB07) 国家自然科学基金支撑项目(41171274)
关键词 小光斑激光雷达 树高估测 点云密度 单木分割 small footprint LiDAR, tree height, point cloud density, individual tree segmentation
作者简介 通信作者:邢艳秋(1970-),女,博导、教授,研究方向为3S技术及其应用、森工管理及林业信息工程,E-mail:yanqiuxing@nefu.edu.cn
  • 相关文献

参考文献19

  • 1Zhang K, Chen S, Whitman D, et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data [ J]. IEEE Transactions on Geoscienee and Remote Sensing, 2003, 41(4) : 872 -882.
  • 2庞勇,赵峰,李增元,周淑芳,邓广,刘清旺,陈尔学.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158. 被引量:108
  • 3Clark M L, Clark D B, Roberts D A. Small - footprint lidar estimation of sub - canopy elevation and tree height in a tropical rain forest land- scape[ J]. Remote Sensing of Environment, 2004, 91 ( 1 ) : 68 - 89.
  • 4Brandtberg T, Warner T A, Landenberger R E, et al. Detection and analysis of individual leaf - off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America[J]. Remote Sensing of. Environment, 2003, 85 (3) : 290 - 303.
  • 5Hirata Y, Naoyuki F, Makoto S, et forest management: individual tree al. Airborne laser scanning in identification and laser pulse penetration in a stand with different levels of thinning [ J ]. Forest Ecology and Management, 2009, 258 (5) : 752 - 760.
  • 6Gleason C J, Im J. Forest biomass estimation from airborne LiDAR data using machine learning approaches [ J ] . Remote Sensing of Environment, 2012, 125 : 80 -91.
  • 7Popescu S C, Wynne R H, Scrivani J A. Fusion of small - footprint lidar and multispectral data to estimate plot - level volume and biomass in deciduous and pine forests in Virginia, USA [ J 1. Forest Science, 2004, 50(4) : 551 -565.
  • 82hen Q, Baldoechi D, Gong P, et al. Isolating individual trees in a savanna woodland using small footprint lidar data[ J]. Photogrammetric Engineering and Remote Sensing, 2006, 72 (8) : 923 - 932.
  • 9. Kwak D A, Lee W K, Lee J H, et al. Detection of individual trees and estimation of tree height using LiDAR data[ J]. Journal of Forest Re- search, 2007, 12(6) : 425 -434.
  • 10刘清旺,李增元,陈尔学,庞勇,武红敢.利用机载激光雷达数据提取单株木树高和树冠[J].北京林业大学学报,2008,30(6):83-89. 被引量:65

二级参考文献52

共引文献184

同被引文献217

引证文献22

二级引证文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部