期刊文献+

铝毒和低磷胁迫下水稻幼苗抗氧化系统的响应 被引量:17

Involvement of Antioxidative Defense System in Rice Seedlings Exposed to Aluminum Toxicity and Phosphorus Deficiency
在线阅读 下载PDF
导出
摘要 采用营养液培养,研究了低磷、铝毒单独及复合胁迫对耐铝性不同的水稻基因型(甬优8号和秀水132)幼苗生长、叶绿素和游离脯氨酸含量、抗氧化酶活性和膜质过氧化水平的影响。结果表明,低磷和铝毒处理均显著抑制水稻幼苗生长,并导致叶绿素含量下降,叶片中游离脯氨酸和根系及叶片中丙二醛(MDA)含量大幅上升,根系中过氧化物酶(POD)和超氧化物歧化酶(SOD)活性上升,而叶片中两类抗氧化酶活性下降。胁迫处理对甬优8号的生长抑制更强,秀水132表现为耐铝兼耐低磷胁迫。复合处理下低磷可加剧铝毒对水稻幼苗生长的抑制,并诱发更严重的氧化胁迫。 Plants growing in acid soils may suffer both phosphorus (P) deficiency and aluminum (Al) toxicity. Hydroponic experiments were undertaken to assess the single and combination effects of Al toxicity and low P stress on seedling growth, chlorophyll and proline contents, antioxidative response and lipid peroxidation of two rice genotypes (Yongyou 8 and Xiushui 132) differing in AI tolerance. Al toxicity and P deficiency both inhibited rice seedling growth. The development of toxic symptoms was characterized by reduced chlorophyll content, increased proline and malondialdehyde contents in both roots and leaves, and increased peroxidase and superoxide dismutase activities in roots, but decreased in leaves. The stress condition induced more severe growth inhibition and oxidative stress in Yongyou 8, and Xiushui 132 showed higher tolerance to both Al toxicity and P deficiency. P deficiency aggravated Al toxicity to plant growth and induced more severe lipid peroxidation.
出处 《中国水稻科学》 CAS CSCD 北大核心 2013年第6期653-657,共5页 Chinese Journal of Rice Science
基金 浙江省自然科学基金资助项目(Y3100450)
关键词 铝毒 低磷胁迫 水稻 植株生长 氧化胁迫 aluminum toxicity phosphorus deficiency rice plant growth oxidative stress
作者简介 通讯联系人,E—mail:Guotr@163.com.
  • 相关文献

参考文献30

  • 1Simon L, Kieger M, Sung S S, et al. Aluminum toxicity in to- mato: Ⅱ. Leaf gas exchange, chlorophyll content, and invert- ase activity. J Plant Nutr, 1994, 17:303 -317.
  • 2Doncheva S, Amen6s M, Poschenrieder C, et al. Root cell patterning: A primary target for aluminium toxicity in maize. J Exper Bot, 2005, 56(414) : 1213-1220.
  • 3Poschenrieder C, Gunse B, Corrales I,et al. A glance into alu- minum toxicity and resistance in plants. Sci Total Environ, 2008, 400(1/3): 356-368.
  • 4Amenes M, Corrales I, Poschenrieder C, et al. Different effects of aluminum on the aetin cytoskeleton and brefeldin a- sensitive vesicle recycling in root apex cells of two maize varie- ties differing in root elongation rate and aluminum tolerance,. Plant Cell Physiol, 2009, 50(3): 528-540.
  • 5Zhou S, Sauv: R, Thannhauser T W. Proteome changes in- duced by aluminum stress in tomato roots.J Exp Bot, 2009, 57: 4201-4213.
  • 6Tan K, Keltjens W G. Interaction between aluminum and phosphorus in sorghum plants. Plant Soil, 1990, 124: 15-23.
  • 7Chaudhary M L, Adu-Gyamfi J J, Saneoka H, et al. The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiol Plant, 2008, 30: 537-544.
  • 8Vieira F C B, He Z L, Wilson P C A, et al. Response of repre- sentative cover crops to aluminum toxicity, phosphorus depri- vation, and organic amendment. Aust J Agric Res, 2008, 59 : 52-61.
  • 9Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol, 2000, 200: 1-46.
  • 10Monette M Y, Yada T, Matey V, et al. Physiological, molecu- lar, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum. Aquat Toxicol, 2010, 99(1): 17- 32.

同被引文献213

引证文献17

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部