期刊文献+

基于T-S推理网络的油田开发指标预测方法 被引量:4

Forecasting methods of oil field development indexes based on T-S reasoning networks
在线阅读 下载PDF
导出
摘要 针对油田开发指标预测问题,提出一种T-S推理元模型,该模型包括输入层、模糊化层和推理层。每个推理元对应一条模糊逻辑规则,由若干T-S推理元可构成T-S推理网络。网络可调参数包括模糊集参数和模糊规则参数。提出了基于改进量子粒子群优化的参数确定方法。以油田开发指标中含水率和采油量预测为例,结果表明,该方法是有效且可行的,从而表明模糊逻辑与智能优化算法的融合对于解决指标预测问题具有一定潜力。 Aiming at the forecast of oilfield development indexes,this paper proposed a T-S reasoning unit that included input layer,fuzzification layer and reasoning layer.Each T-S reasoning unit corresponds to a fuzzy logic rule,and a lot of T-S reasoning units may constitute a T-S reasoning networks.The adjustable parameters of proposed model included the fuzzy set parameters and fuzzy rule parameters.For determining these parameters,it presented an improved quantum particle swarm optimization.With forecast of moisture content and oil production as an example,the experimental results show that this method is effective and that the integration of fuzzy logic and intelligent optimization algorithms has a certain potential for solving problems of indicators forecast.
出处 《计算机应用研究》 CSCD 北大核心 2011年第8期2991-2993,共3页 Application Research of Computers
基金 中国博士后科学基金资助项目(20090460864 201003405) 黑龙江省博士后科学基金资助项目(LBH-Z09289) 黑龙江省教育厅科学技术研究项目(11551015)
关键词 T-S推理网络 粒子群优化 指标预测 优化算法 T-S reasoning networks particle swarm optimization indexes forecast optimization algorithm
作者简介 朱秀莉(1967-),女,黑龙江人,讲师,主要研究方向为人工智能及其应用; 李龙(1967-),男,黑龙江人,副教授,博士,主要研究方向为人工智能和嵌入式系统; 辛盼池(1969-),男,河北人,副教授,博士,主要研究方向为量子智能优化和量子神经网络(1ipanchi@vip.sina.com).
  • 相关文献

参考文献13

  • 1刘义坤,毕永斌,隋新光.聚合物驱开发指标预测方法研究[J].大庆石油地质与开发,2007,26(2):105-107. 被引量:9
  • 2宋考平,聂洋,邵振波,张继成,常玉青.聚合物驱油藏剩余油饱和度分布预测的φ函数法[J].石油学报,2008,29(6):899-902. 被引量:6
  • 3黄德双.智能计算研究进展与发展趋势[J].中国科学院院刊,2006,21(1):46-52. 被引量:12
  • 4JIANG M, LUO Y P, YANG S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[J]. Information Processing Letters,2007,102( 1 ) : 8-16.
  • 5BERGH F, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories [ J ]. Information Science, 2006, 176 (8) : 937-971.
  • 6CAI X J, CUI Z H, ZENG J C. Dispersed particle swarm optimization [J]. Information Processing Letters,2008,105(6) :231-235.
  • 7CHATrER.1EE A, SIARRY P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[ J ]. Computers & Operations Research,2007,33 ( 3 ) :859- 871.
  • 8LIU Y, QIN Z, SHI Z W. Center particle swarm optimization [ J ]. Neurocomputing ,2007,70(4-6) :672-679.
  • 9LIU B, WANG L, JIN Y H. Improved particle swarm optimization combined with chaos [ J ]. Chaos Solitons & Fractals, 2005,25 (5) :1261-1271.
  • 10LUO Q, YI D Y. A co-evolving framework for robust particle swarm optimization[J]. Applied Mathematics and Computation,2008, 199(2) :611-622.

二级参考文献21

  • 1宋考平,吴玉树,计秉玉.水驱油藏剩余油饱和度分布预测的φ函数法[J].石油学报,2006,27(3):91-95. 被引量:29
  • 2朱怀江,罗健辉,隋新光,姚天明,杨凤华,代素娟,杨静波.新型聚合物溶液的微观结构研究[J].石油学报,2006,27(6):79-83. 被引量:22
  • 3唐金星,陈铁龙,何劲松,彭克琮,昌润珍.聚合物驱相对渗透率曲线实验研究[J].石油学报,1997,18(1):81-85. 被引量:23
  • 4Apnik V V. The Nature of Statistical Learning Theory. New York: Springer-Verlag Press, 1995.
  • 5Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine learning, 1997, 29(2-3): 131-163.
  • 6Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 1299-1319.
  • 7Rumelhart D E, Hinton G E, Williams R J.Learning internal representations by error propagation, parallel distributed processing:Explorations in the Microstructure of cognition,Vol I: Foundation. Cambridge, Massachusetts:MIT Press, 1986.
  • 8Zhan-Li Sun, D S Huang, Yiu-Ming Cheung.Extracting nonlinear features for multispectral images by FCMC and KPCA. Digital Signal Processing, 2005, 15(4): 331-346.
  • 9D S Huang, Horace H S Ip, Zheru Chi. A neural root finder of polynomials based on root moments.Neural Computation, 2004, 16(8):1721-1762.
  • 10D S Huang. A constructive approach for finding arbitrary roots of polynomials by neural networks,IEEE Transactions on Neural Networks, 2004, 15(2): 477-491.

共引文献22

同被引文献21

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部