期刊文献+

一种基于概念矩阵的概念格生成算法 被引量:4

New Algorithm of Generating Concept Lattice Based on Concept-matrix
在线阅读 下载PDF
导出
摘要 概念格作为形式概念分析理论中的核心数据结构,在机器学习和数据挖掘等领域有着广泛的应用。构造概念格十分重要,针对此引入了概念矩阵思想,提出了基于概念矩阵的概念格生成算法CMCG(Concept-Matrix Based Concepts Generation)。该算法从格的顶端节点开始构造,基于概念矩阵,利用属性的秩为每个节点生成它的所有子节点,完成子节点到父节点之间的链接,并生成哈斯图。给出了这种算法的理论依据。最后提供了这一算法的伪码,并通过实验证明了CMCG算法的时间性能优于Lattice算法。 Concept lattice,the core data structure in FCA(Formal Concept Analysis),has been widely used in machine learning and data mining.In its applications,building concept lattice is very important,for which an efficient algorithm CMCG based on concept-matrix was put forward.The algorithm started from the top node of the lattice,generated all subnodes for each node using the rank of the concept matrix's attributes,completed the link between the subnodes and their parent,and generated the Hasse graph.The validity of the algorithm was proved in theory.In the end,the pseudo code of CMCG algorithm was given and that performance of CMCG is superior in time to lattice algorithm was proved by experiments.
出处 《计算机科学》 CSCD 北大核心 2010年第9期180-183,共4页 Computer Science
基金 国家高技术研究发展计划(863计划)(No.2007AA11z124) 国家科技支撑计划子课题(No.2006BAJ18B02-06)资助
关键词 概念格 概念矩阵 矩阵的秩 形式概念分析 哈斯图 Concept lattice Concept matrix Rank of matrix Formal concept analysis Hasse graph
作者简介 陈震(1949-),男,教授,主要研究方向为数据库、数据挖掘、决策支持,E-mail:nazhang08@mails.jlu.edu.cn; 张娜(1985-),女,硕士生,主要研究方向为计算机仿真、数据挖掘、机器学习; 王甦菁(1976-),男,博士生,主要研究方向为机器学习、数据挖掘,E-mail:wangsj08@mails.jlu.edu.cn(通讯作者)。
  • 相关文献

参考文献12

  • 1Wille R.Restructuring lattice theory:An approach based on hie-rarchies of concepts[C] ∥Rival I.Ordered Sets.Dordrecht,Boston:Reidel,1982:445-470.
  • 2Oosthulzen G D.The application of concept lattice to machine learning[R].South Africa:University of Pretoria,1996.
  • 3Godin R.Incremental concept formation algorithm based on Galois(concept) lattices[J].Computational Intelligence,1995,11(2):246-267.
  • 4Carpineto C,Romano G.Galois:an order-theoretic approach to conceptual clustering[C] ∥Proceedings of ICML-93.Utgoff Ped,1993:33-40.
  • 5Ho T B.Incremental conceptual clustering in the framework of Galois lattice[C] ∥LU Hong-Jun,Motoda H,LIU Huan,eds.KDD:Techniques and Applications.Singapore:World Scientific,1997:49-64.
  • 6Ganter B.Two basic algorithms in concept analysis.FB4-Preprint No.831,TH Darmstadt.
  • 7Stumme G,Taouil R,Bastide Y,et al.Fast computation of concept lattices using data mining techniques[C] ∥Proceedings of 7th International Workshop on Knowledge Representation Meets Databases(KRDB 2000).Berlin,2000:129-139.
  • 8Nourine L,Raynaud O.A fast algorithm for building lattices[C] ∥Workshop on Computational Graph Theory and Combinatorics.Victoria,1999:199-204.
  • 9Bordat J P.Calcul pratique du treillis de Galois d'une correspondance[J].Math.Sci.Hum.,1996:31-47.
  • 10Lindig C.Fast concept analysis[C] ∥Stumme G.ed,Workingwith Conceptual Structures-Contributions to ICCS 2000.Shaker Verlag,Aachen,Germany,2000.

二级参考文献7

  • 1曲开社,翟岩慧.偏序集、包含度与形式概念分析[J].计算机学报,2006,29(2):219-226. 被引量:52
  • 2Wille R.Restructuring lattice theory:an approach based on hierarchies of concepts.In:Rival I ed.Ordered Sets.Dordrecht:Reidel,1982:445-470.
  • 3Qu K S,Liang J Y,Wang J H et al.The algebraic properties of concept lattice.Journal of Systems Science and Information,2004,2 (2):271-277.
  • 4B Ganter,R Wille.Formal Concept Analysis:Mathematical Foundations.New York:Springer Verlag,1999.
  • 5R Godin,R Missaoui,H Alaoui.Incremental concept formation algorithms based on Galois (concept) lattices.Computational Intelligence,1995,11 (2):246-267.
  • 6G Stumme,R Taouil,Y Bastide et al.Fast computation of concept lattices using data mining techniques.In:Proc of the 7th Int'l Workshop on Knowledge Representation Meets Databases.Berlin:Technical University of Aachen,2000:129-139.
  • 7谢志鹏,刘宗田.概念格的快速渐进式构造算法[J].计算机学报,2002,25(5):490-496. 被引量:122

共引文献4

同被引文献23

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部