期刊文献+

极少信息共享的敏感信息检索方法 被引量:2

Sensitive Information Retrieval Method with Minimal Information Sharing
在线阅读 下载PDF
导出
摘要 敏感信息检索是安全多方计算研究的热点,而现有的敏感信息检索方法不能有效地保护用户的查询信息。针对上述问题,通过引入茫然第三方,在半诚实模型下基于不可区分概念以及交换加密的安全性假设,给出极少信息共享的敏感信息检索方法,分析和证明了方案的正确性和安全性。 Sensitive Information Retrieval(SIR) is a hotspot in research of secure multi-party computation. But the existing methods of SIR method can not protect user's information very well during query. This paper introduces the oblivious third party, indistinguishable concept and the assumption of combination commutative encryption in semi-honest model. A SIR method based on sharing of least information is proposed, which can apply to documentary data retrieval efficiently. Analysis and proof on security and correctness of the method are presented.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第16期39-41,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60773100) 国家"十一五"科技支撑计划基金资助项目(2006BAK05B02)
关键词 安全多方计算 敏感信息检索 隐私保护 密码学 secure multi-party computation Sensitive Information Retrieval(SIR) privacy protection eryptology
作者简介 苑迎(1981-),女,硕士研究生,主研方向:敏感信息检索,数据安全;E-mail:yuanying1121@163.com 刘国华,教授、博士生导师; 硕士研究生 硕士研究生
  • 相关文献

参考文献3

二级参考文献24

  • 1Rakesh Agrawal,Tomasz Imieliński,et al.Mining association rules between sets of items in large databases[A].In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data[C].Washion D C,USA,1993.207-216.
  • 2J Vaidya,C Clifton.Privacy preserving association rule mining in vertically partitioned data[A].In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Edmonton,Canada,2002.639-644.
  • 3R Agrawal,S Ramakrishnan.Privacy-preserving data mining[A].In Proceedings of of the 2000 ACM SIGMOD International Conference on Management of Data[C].Dallas,USA,2000.439-450.
  • 4Murat Kantarcioglu,Chris Clifton.Privacy-preserving distributed mining of association rules on horizontally partitioned data[A].Transactions on Knowledge and Data Engineering[C].IEEE Computer Society Press,Los Alamitos,CA,to appear.http://www.cs.purdue.edu/homes/clifton/document/Kantarcioglu.pdf.
  • 5Y Lindell,B Pinkas.Privacy preserving data mining[A].In Advances in Cryptology-CRYPTO'00,volume 1880 of Lecture Notes in Computer Science[C].Springer-Verlag,2000.36-54.
  • 6Wenliang Du,Zhijun Zhan.Using randomized response techniques for privacy preserving data mining[A].In Proceedings of The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Washington D C,USA,2003.505-510.
  • 7Zhijun Zhan,Wenliang Du.Privacy-Preserving Data Mining Using Multi-Group Randomized Response Techniques[R].Technical Report,June 2003.http://www.cis.syr.edu/~wedu/Research/paper/multi-group.pdf.
  • 8Y Saygin,V S Verykios,et al.Privacy preserving association rule mining[A].In Proceedings of the 12th International Workshop on Research Issues in Data Engineering:Engineering E-Commerce/E-Business Systems[C].2002.151-158.
  • 9A Ev mievski,R Srikant,et,al.Privacy preserving mining of association rules[A].In Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Edmonton,Canada,2002.217-228.
  • 10Stanley RM Oliveira,Osmar R Zaane.Privacy preserving frequent itemset mining[A].In Proceedings of IEEE ICDM Workshop on Privacy,Security and Data Mining[C].Maebashi City,Japan,2002.43-54.

共引文献70

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部