摘要
本文旨在解决当证券市场不允许卖空时,'均值-CVaR'模型的求解问题。若风险资产收益率服从正态分布,则在效用最大化原则下的'均值-方差'模型的两种解法是一致的。并且可以证明'均值-CVaR'模型的有效前沿是'均值-方差'模型有效前沿的一部分。从而用'均值-方差'模型的有效前沿表示出'均值-CVaR'模型的有效前沿,使其直接可以用计算机来求解。并且因为效用函数的引入,因此可以求得满足不同风险偏好投资者的资产配置。
An exponential utility function has been devised by making use of the Mean-CVaR model and its efficient frontier. Subsequently, using the principle of maximizing utility, the Mean-CVaR model was converted to a model that can be directly solved by computer in an equity market where shorting sale is prohibited. By applying this exponential utility function, portfolios to suit a variety of different investors can be obtained.
出处
《北京化工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第2期110-112,共3页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
作者简介
男,1982年生,硕士生
通讯联系人 E-mail:yangyongyu1765@sina.com