期刊文献+

自回归求和移动平均季节乘积模型在结核病发病率预测中的应用 被引量:12

Applications of multiple seasonal autoregressive integrated moving average(ARIMA)model on predictive incidence of tuberculosis
原文传递
导出
摘要 目的探讨自回归求和移动平均(autoregressive integrated moving average,ARIMA)季节乘积模型在季节性时间序列资料分析中的应用,建立结核病发病率的预测模型。方法利用重庆市结核病防治所登记的某区1993至2004年结核病新发病例数及该区各年的平均人口数,采用条件最小二乘法估计模型参数,按照残差不相关原则、简洁原则确定模型的结构,依据 Akaike 信息准则(Akaike's information criterion,AIC)与 Schwartz 的贝叶斯信息准则(Bayesian information criterion,BIC)确定模型的阶数,建立结核病发病率 ARIMA 季节乘积预测模型。结果非季节和季节移动平均参数分别为0.84076和0.46602,t 检验的 P 值均小于0.05,有统计学意义,方差估计值为0.088589,AIC=19.75979,SBC=23.28219,显示模型提取序列中几乎所有的样本相关信息。对模型进行残差白噪声分析,x^2检验统计量的 P 值均大于0.05,表明 ARIMA(0,1,1)(0,1,1)_4NOINT 模型是有效的。结论 ARIMA(0,1,1)(0,1,1)_4NOINT 模型是一种短期内预测精度较高的结核病发病率预测模型。 Objective To discuss the application of multiple seasonal autoregressive integrated moving average (ARIMA) predictive model of time series and to establish a predictive incidence model of tuberculosis. Methods Parameters of the model were estimated using conditional least squares method according to the data of tuberculosis incidence and the averaged population in a district in Chongqing from 1993 to 2004. In a structure determined according to criteria of residual un-correlation and concision, ARIMA predictive model was established and the order of model was confirmed by Akaike's Information Criterion(AIC, for short) and Schwartz' s Bayesian Information Criterion ( SBC or BIC, for short). Results There were significant differences of the fitted multiple seasonal moving-average coefficients with the nonseasonal and the seasonal moving-average coefficients being 0. 84076 and 0. 46602 respectively. The estimated variance was 0.088589, AIC = 19. 75979, SBC = 23. 28219. Autocorrelation check of residuals of model was white-noise residual. ARIMA(0,1,1 ) (0,1,1)4NOINT seemed to be the most appropriate model by X^2 test. Conclusion The multiple seasonal ARIMA model can be used to forecast for tuberculosis incidence with high prediction and precision in a short-term.
出处 《中华预防医学杂志》 CAS CSCD 北大核心 2007年第2期118-121,共4页 Chinese Journal of Preventive Medicine
关键词 模型 统计学 结核 时间因素 发病率 预测 Models Statistical study Tuberculosis Time factors Incidence Forecasting
作者简介 通讯作者:王润华,Email:wzhzyp@163.com
  • 相关文献

参考文献12

  • 1Shimao T. Tuberculosis and its control-lessons from the past and future prospect. Kekkaku, 2005,80:481-489.
  • 2Porter JD, McAdam KP. The re-emergence of tuberculosis. Annu Rev Public Health, 1994,15:303-323.
  • 3Geoge E,Box P.时间序列分析:预测与控制.北京:中国统计出版社,1997。.
  • 4丁守銮,康家琦,王洁贞.ARIMA模型在发病率预测中的应用[J].中国医院统计,2003,10(1):23-26. 被引量:51
  • 5SAS公司.SAS/ETS软件使用手册.北京:中国统计出版社,1998.
  • 6王黎霞,施鸿生.我国结核病流行病学模型及疫情态势浅析[J].结核病与胸部肿瘤,1994(1):5-8. 被引量:3
  • 7Dye C, Fengzeng Z, Scheele S, et al. Evaluating the impact of tuberculosis control: number of deaths prevented by short-course chemotherapy in China. Int J Epidemiol,2000,29:558-564.
  • 8Nishiura H,Patanarapelert K, Tang IM. Predicting the future trend of drug-resistant tuberculosis in Thailand: assessing the impact of control strategies. Southeast Asian J Trop Med Public Health,2004,35:649-656.
  • 9Rios M, Garcia JM, Sanchez JA, et al. A statistical analysis of the seasonality in pulmonary tuberculosis. Eur J Epidemiol, 2000,16 :483-488.
  • 10West RW, Thompson JR. Modeling the impact of HIV on the spread of tuberculosis in the United States. Math Biosci, 1997,143:35-60.

二级参考文献3

共引文献52

同被引文献120

引证文献12

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部